Gauge invariance, the quantum action principle, and the renormalization group

被引:98
作者
DAttanasio, M [1 ]
Morris, TR [1 ]
机构
[1] IST NAZL FIS NUCL, GRP COLLEGATO PARMA, I-43100 PARMA, ITALY
关键词
D O I
10.1016/0370-2693(96)00411-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
If the Wilsonian renormalization group (RG) is formulated with a cutoff that breaks gauge invariance, then gauge invariance may be recovered only once the cutoff is removed and only once a set of effective Ward identities is imposed. We show that an effective quantum action principle can be formulated in perturbation theory which enables the effective Ward identities to be solved order by order, even if the theory requires nonvanishing subtraction points, The difficulties encountered with nonperturbative approximations are briefly discussed.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 44 条
[1]   GLOBAL ASPECTS OF COVARIANT QUANTIZATION OF GAUGE-THEORIES [J].
ASOREY, M ;
FALCETO, F .
ANNALS OF PHYSICS, 1989, 196 (01) :209-226
[2]   RENORMALIZABILITY OF EFFECTIVE SCALAR FIELD-THEORY [J].
BALL, RD ;
THORNE, RS .
ANNALS OF PHYSICS, 1994, 236 (01) :117-204
[3]  
BANDELLONI G, 1978, ANN I H POINCARE A, V28, P225
[4]   ON THE CANCELLATION OF HARD ANOMALIES IN GAUGE FIELD MODELS - A REGULARIZATION INDEPENDENT PROOF [J].
BANDELLONI, G ;
BECCHI, C ;
BLASI, A ;
COLLINA, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 72 (03) :239-272
[5]   PERTURBATIVE GAUGE-THEORIES [J].
BAULIEU, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 129 (01) :1-74
[6]   RENORMALIZABILITY AND INFRARED FINITENESS OF NON-LINEAR SIGMA-MODELS - A REGULARIZATION-INDEPENDENT ANALYSIS FOR COMPACT COSET SPACES [J].
BECCHI, C ;
BLASI, A ;
BONNEAU, G ;
COLLINA, R ;
DELDUC, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (01) :121-148
[7]   RENORMALIZATION OF GAUGE THEORIES [J].
BECCHI, C ;
ROUET, A ;
STORA, R .
ANNALS OF PHYSICS, 1976, 98 (02) :287-321
[8]  
BECCHI C, 1993, ELEMENTARY PARTICLES
[9]  
BECCHI CM, 1984, HOUCHES, V1983
[10]   PERTURBATIVE RENORMALIZATION AND INFRARED FINITENESS IN THE WILSON RENORMALIZATION-GROUP - THE MASSLESS SCALAR CASE [J].
BONINI, M ;
DATTANASIO, M ;
MARCHESINI, G .
NUCLEAR PHYSICS B, 1993, 409 (02) :441-464