Scaling factors for carbon NMR chemical shifts obtained from DFF B3LYP calculations

被引:88
作者
Aliev, Abil E. [1 ]
Courtier-Murias, Denis [1 ]
Zhou, Shen [1 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
来源
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM | 2009年 / 893卷 / 1-3期
基金
英国工程与自然科学研究理事会;
关键词
Chemical shift; Scaling factor; NMR; DFT; GIAO; SPIN COUPLING-CONSTANTS; DENSITY-FUNCTIONAL THEORY; SHIELDING CONSTANTS; VIBRATIONAL FREQUENCIES; CONFIGURATION; CHEMISTRY; TENSORS; MODELS; C-13;
D O I
10.1016/j.theochem.2008.09.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A linear scaling of the calculated chemical shifts is used in order to improve the accuracy of the DFT predicted (13)C NMR chemical shifts, The widely applied method of GIAO B3LYP/6-311+G(2d,p) using the B3LYP/6-3G(d) optimized geometries is chosen, which allows cost-effective calculations of the 13C chemical shifts in the molecular systems with 100 and more atoms. A set of 27 13C NMR chemical shifts determined experimentally for 22 simple molecules with various functional groups is used in order to determine scaling factors for reproducing experimentally measured values of (13)C chemical shifts. The results show that the use of a simple relationship (delta(scale) = 0.95 delta(calc) + 0.30, where delta(calc) and 5(scalc) are the (13)C calculated and the linearly scaled values of the chemical shifts, respectively) allows to achieve a three-fold improvement in mean absolute deviations for 27 chemical shifts considered. To test the universal applicability of the scaling factors derived, we have used complex organic molecules such as taxol and a steroid to demonstrate the significantly improved accuracy of the DFT predicted chemical shifts. This approach also outperforms the recently recommended usage of the Hartree-Fock optimized geometries for the GIAO B3LYP/6-311+G(2d,p) calculations of the (13)C chemical shifts. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 23 条
[1]  
ALIEV AE, 1988, KHIM GETEROTSIKL+, P1466
[2]   Scaling factors for fundamental vibrational frequencies and zero-point energies obtained from HF, MP2, and DFT/DZP and UP harmonic frequencies [J].
Andrade, S. G. ;
Goncalves, Luisa C. S. ;
Jorge, F. E. .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2008, 864 (1-3) :20-25
[3]   Correlation of empirical δ(TMS) and absolute NMR chemical shifts predicted by ab initio computations [J].
Baldridge, KK ;
Siegel, JS .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (20) :4038-4042
[4]  
Buhl M., 2004, Calculation of NMR and EPR Parameters
[5]   A comparison of models for calculating nuclear magnetic resonance shielding tensors [J].
Cheeseman, JR ;
Trucks, GW ;
Keith, TA ;
Frisch, MJ .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (14) :5497-5509
[6]   On the calculation of hydrogen NMR chemical shielding [J].
Chesnut, DB .
CHEMICAL PHYSICS, 1997, 214 (01) :73-79
[7]   MOLECULAR-ORBITAL THEORY OF MAGNETIC SHIELDING AND MAGNETIC SUSCEPTIBILITY [J].
DITCHFIELD, R .
JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (11) :5688-+
[8]   Computed C-13 NMR chemical shifts via empirically scaled GIAO shieldings and molecular mechanics geometries. Conformation and configuration from C-13 shifts [J].
Forsyth, DA ;
Sebag, AB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (40) :9483-9494
[9]  
Frisch M. J., GAUSSIAN 03 REVISION
[10]   Perturbative treatment of triple excitations in coupled-cluster calculations of nuclear magnetic shielding constants [J].
Gauss, J ;
Stanton, JF .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (07) :2574-2583