Phylogenetic classification and the universal tree

被引:1213
作者
Doolittle, WF [1 ]
机构
[1] Dalhousie Univ, Dept Biochem & Mol Biol, Canadian Inst Adv Res, Halifax, NS B3H 4H7, Canada
关键词
D O I
10.1126/science.284.5423.2124
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
From comparative analyses of the nucleotide sequences of genes encoding ribosomal RNAs and several proteins, molecular phylogeneticists have constructed a "universal tree of life," taking it as the basis for a "natural" hierarchical classification of all living things. Although confidence in some of the tree's early branches has recently been shaken, new approaches could still resolve many methodological uncertainties. More challenging is evidence that most archaeal and bacterial genomes (and the inferred ancestral eukaryotic nuclear genome) contain genes from multiple sources. If "chimerism" or "lateral gene transfer" cannot be dismissed as trivial in extent: or limited to special categories of genes, then no hierarchical universal classification can be taken as natural. Molecular phylogeneticists will have failed to find the "true tree," not because their methods are inadequate or because they have chosen the wrong genes, but because the history of Life cannot properly be represented as a tree. However, taxonomies based on molecular sequences will remain indispensable, and understanding of the evolutionary process will ultimately be enriched, not impoverished.
引用
收藏
页码:2124 / 2128
页数:5
相关论文
共 73 条
[1]  
[Anonymous], 1997, METAPHYSICS ORIGIN S
[2]   Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles [J].
Aravind, L ;
Tatusov, RL ;
Wolf, YI ;
Walker, DR ;
Koonin, EV .
TRENDS IN GENETICS, 1998, 14 (11) :442-444
[3]   An Escherichia coli strain with all chromosomal rRNA operons inactivated:: Complete exchange of rRNA genes between bacteria [J].
Asai, T ;
Zaporojets, D ;
Squires, C ;
Squires, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (05) :1971-1976
[4]   The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny [J].
Baldauf, SL ;
Palmer, JD ;
Doolittle, WF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :7749-7754
[5]  
BALDAUF SL, UNPUB
[6]   A bacterial antibiotic resistance gene with eukaryotic origins [J].
Brown, JR ;
Zhang, JZ ;
Hodgson, JE .
CURRENT BIOLOGY, 1998, 8 (11) :R365-R367
[7]   ROOT OF THE UNIVERSAL TREE OF LIFE BASED ON ANCIENT AMINOACYL-TRANSFER-RNA SYNTHETASE GENE DUPLICATIONS [J].
BROWN, JR ;
DOOLITTLE, WF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (07) :2441-2445
[8]   Archaea and the prokaryote-to-eukaryote transition [J].
Brown, JR ;
Doolittle, WF .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1997, 61 (04) :456-+
[9]   MOLECULAR EVOLUTION - EUKARYOTES WITH NO MITOCHONDRIA [J].
CAVALIERSMITH, T .
NATURE, 1987, 326 (6111) :332-333
[10]   On the evolution of the single-subunit RNA polymerases [J].
Cermakian, N ;
Ikeda, TM ;
Miramontes, P ;
Lang, BF ;
Gray, MW ;
Cedergren, R .
JOURNAL OF MOLECULAR EVOLUTION, 1997, 45 (06) :671-681