Spanning minimal surfaces

被引:29
作者
Fischer, W [1 ]
Koch, E [1 ]
机构
[1] UNIV MARBURG, WISSENSCH ZENTRUM MAT WISSENSCH, D-35032 MARBURG, GERMANY
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1996年 / 354卷 / 1715期
关键词
D O I
10.1098/rsta.1996.0094
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spanning minimal surfaces are 3-periodic minimal surfaces which contain straight lines, i.e. axes of 2-fold symmetry. We have used crystallographic knowledge of the space groups and of the corresponding arrangements of 2-fold axes involved for the derivation of new surfaces of this type and for their systematic description. Complete information on spanning minimal surfaces without self-intersections is given with respect to their symmetry and topology, together with some new results on spanning minimal surfaces with self-intersections along straight-lines.
引用
收藏
页码:2105 / 2142
页数:38
相关论文
共 47 条
[1]  
Anderson DM., 1990, ADV CHEM PHYS, V77, P337
[2]   THE INTRINSIC CURVATURE OF SOLIDS [J].
ANDERSSON, S ;
HYDE, ST ;
VONSCHNERING, HG .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1984, 168 (1-4) :1-17
[3]  
[Anonymous], SITZUNGSBER K PRE PM
[4]  
[Anonymous], 1983, ANGEW CHEM
[5]   GEOMETRICAL SYMBOLS FOR ALL CRYSTALLOGRAPHIC SYMMETRY GROUPS UP TO 3 DIMENSIONS [J].
BOHM, J ;
DORNBERG.K .
ACTA CRYSTALLOGRAPHICA, 1967, 23 :913-&
[6]  
CVIJOVIC D, 1992, J PHYS I, V2, P2191, DOI 10.1051/jp1:1992276
[7]  
CVIJOVIC D, 1993, J PHYS I, V3, P909, DOI 10.1051/jp1:1993172
[8]  
CVIJOVIC D, 1992, J PHYS I, V2, P2207, DOI 10.1051/jp1:1992102
[9]   THE T-FAMILY AND CLP-FAMILY OF TRIPLY PERIODIC MINIMAL-SURFACES .1. DERIVATION OF PARAMETRIC EQUATIONS [J].
CVIJOVIC, D ;
KLINOWSKI, J .
JOURNAL DE PHYSIQUE I, 1992, 2 (02) :137-147
[10]  
Dierkes U, 1992, Minimal Surfaces, VI