Nonconservative Lagrangian and Hamiltonian mechanics

被引:594
作者
Riewe, F
机构
[1] ENSCO Inc., Melbourne, FL, 32940
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 02期
关键词
D O I
10.1103/PhysRevE.53.1890
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Traditional Lagrangian and Hamiltonian mechanics cannot be used with nonconservative forces such as friction. A method is proposed that uses a Lagrangian containing derivatives of fractional order. A direct calculation gives an Euler-Lagrange equation of motion for nonconservative forces. Conjugate momenta are defined and Hamilton's equations are derived using generalized classical mechanics with fractional and higher-order derivatives. The method is applied to the case of a classical frictional force proportional to velocity.
引用
收藏
页码:1890 / 1899
页数:10
相关论文
共 64 条
[1]   NEW CLASS OF SCHRODINGER OPERATORS FOR QUANTIZED FRICTION [J].
ALBRECHT, K .
PHYSICS LETTERS B, 1975, B 56 (02) :127-129
[2]  
ANDERSON JL, 1967, PRINCIPLES RELATIVIT, P344
[3]   DISSIPATIVE QUANTUM-SYSTEMS WITH A POTENTIAL BARRIER - GENERAL-THEORY AND THE PARABOLIC BARRIER [J].
ANKERHOLD, J ;
GRABERT, H ;
INGOLD, GL .
PHYSICAL REVIEW E, 1995, 51 (05) :4267-4281
[4]  
[Anonymous], 1832, J ECOLE POLYTECH
[5]   RAMANUJANS QUARTERLY REPORTS [J].
BERNDT, BC .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1984, 16 (SEP) :449-489
[6]   THE QUARTERLY REPORTS OF RAMANUJAN,S. [J].
BERNDT, BC .
AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (08) :505-516
[7]  
BERNDT BC, 1985, RAMANUJANS NOTEBOO 1, P329
[8]  
Bopp F, 1940, ANN PHYS-BERLIN, V38, P345
[9]   QUANTUM FRICTION IN THE C-NUMBER PICTURE - THE DAMPED HARMONIC-OSCILLATOR [J].
BRINATI, JR ;
MIZRAHI, SS .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (08) :2154-2158
[10]  
BRUNETTI ME, 1993, ATTI SEMIN MAT FIS U, V41, P81