In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed

被引:84
作者
Agrawal, Ganesh Kumar [1 ,2 ]
Hajduch, Martin [1 ]
Graham, Katherine [1 ]
Thelen, Jay J. [1 ]
机构
[1] Univ Missouri, Dept Biochem, Life Sci Ctr, Columbia, MO 65211 USA
[2] Res Lab Biotechnol & Biochem, Kathmandu, Nepal
基金
美国国家科学基金会;
关键词
D O I
10.1104/pp.108.119222
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To better understand the metabolic processes of seed filling in soybean (Glycine max), two complementary proteomic approaches, two-dimensional gel electrophoresis (2-DGE) and semicontinuous multidimensional protein identification technology (Sec-MudPIT) coupled with liquid chromatography-mass spectrometry, were employed to analyze whole seed proteins at five developmental stages. 2-DGE and Sec-MudPIT analyses collectively identified 478 nonredundant proteins with only 70 proteins common to both datasets. 2-DGE data revealed that 38% of identified proteins were represented by multiple 2-DGE species. Identified proteins belonged to 13 (2-DGE) and 15 (Sec-MudPIT) functional classes. Proteins involved in metabolism, protein destination and storage, and energy were highly represented, collectively accounting for 61.1% (2-DGE) and 42.2% (Sec-MudPIT) of total identified proteins. Membrane proteins, based upon transmembrane predictions, were 3-fold more prominent in Sec-MudPIT than 2-DGE. Data were integrated into an existing soybean proteome database (www.oilseedproteomics.missouri.edu). The integrated quantitative soybean database was compared to a parallel study of rapeseed (Brassica napus) to further understand the regulation of intermediary metabolism in protein- rich versus oil-rich seeds. Comparative analyses revealed (1) up to 3-fold higher expression of fatty acid biosynthetic proteins during seed filling in rapeseed compared to soybean; and (2) approximately a 48% higher number of protein species and a net 80% higher protein abundance for carbon assimilatory and glycolytic pathways leading to fatty acid synthesis in rapeseed versus soybean. Increased expression of glycolytic and fatty acid biosynthetic proteins in rapeseed compared to soybean suggests that a possible mechanistic basis for higher oil in rapeseed involves the concerted commitment of hexoses to glycolysis and eventual de novo fatty acid synthesis pathways.
引用
收藏
页码:504 / 518
页数:15
相关论文
共 66 条
[1]   Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape [J].
Agrawal, Ganesh Kumar ;
Thelen, Jay J. .
MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (11) :2044-2059
[2]   System, trends and perspectives of proteomics in dicot plants Part I: Technologies in proteome establishment [J].
Agrawal, GK ;
Yonekura, M ;
Iwahashi, Y ;
Iwahashi, H ;
Rakwal, R .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2005, 815 (1-2) :109-123
[3]   A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis [J].
Andre, Carl ;
Froehlich, John E. ;
Moll, Matthew R. ;
Benning, Christoph .
PLANT CELL, 2007, 19 (06) :2006-2022
[4]   Extensive feature detection of N-terminal protein sorting signals [J].
Bannai, H ;
Tamada, Y ;
Maruyama, O ;
Nakai, K ;
Miyano, S .
BIOINFORMATICS, 2002, 18 (02) :298-305
[5]   Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana [J].
Bevan, M ;
Bancroft, I ;
Bent, E ;
Love, K ;
Goodman, H ;
Dean, C ;
Bergkamp, R ;
Dirkse, W ;
Van Staveren, M ;
Stiekema, W ;
Drost, L ;
Ridley, P ;
Hudson, SA ;
Patel, K ;
Murphy, G ;
Piffanelli, P ;
Wedler, H ;
Wedler, E ;
Wambutt, R ;
Weitzenegger, T ;
Pohl, TM ;
Terryn, N ;
Gielen, J ;
Villarroel, R ;
De Clerck, R ;
Van Montagu, M ;
Lecharny, A ;
Auborg, S ;
Gy, I ;
Kreis, M ;
Lao, N ;
Kavanagh, T ;
Hempel, S ;
Kotter, P ;
Entian, KD ;
Rieger, M ;
Schaeffer, M ;
Funk, B ;
Mueller-Auer, S ;
Silvey, M ;
James, R ;
Montfort, A ;
Pons, A ;
Puigdomenech, P ;
Douka, A ;
Voukelatou, E ;
Milioni, D ;
Hatzopoulos, P ;
Piravandi, E ;
Obermaier, B .
NATURE, 1998, 391 (6666) :485-488
[6]   Unraveling the dynamic transcriptome [J].
Brady, Siobhan M. ;
Long, Terri A. ;
Benfey, Philip N. .
PLANT CELL, 2006, 18 (09) :2101-2111
[7]   The vegetative vacuole proteorne of Arabidopsis thaliana reveals predicted and unexpected proteins [J].
Carter, C ;
Pan, SQ ;
Zouhar, J ;
Avila, EL ;
Girke, T ;
Raikhel, NV .
PLANT CELL, 2004, 16 (12) :3285-3303
[8]   Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds [J].
Dhaubhadel, Sangeeta ;
Gijzen, Mark ;
Moy, Pat ;
Farhangkhoee, Mana .
PLANT PHYSIOLOGY, 2007, 143 (01) :326-338
[9]   Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J].
Emanuelsson, O ;
Nielsen, H ;
Brunak, S ;
von Heijne, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :1005-1016
[10]   AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE [J].
ENG, JK ;
MCCORMACK, AL ;
YATES, JR .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) :976-989