Lorentz invariant and supersymmetric interpretation of noncommutative quantum field theory

被引:31
作者
Kobayashi, Y [1 ]
Sasaki, S [1 ]
机构
[1] Tokyo Metropolitan Univ, Fac Sci, Dept Phys, Hachioji, Tokyo 1920397, Japan
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2005年 / 20卷 / 30期
关键词
non(anti)commutative; Hopf algebra; quantum group;
D O I
10.1142/S0217751X05022421
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper, using a Hopf-algebraic method, we construct deformed Poincare SUSY algebra in terms of twisted (Hopf) algebra. By adapting this twist deformed superPoincare algebra as our fundamental symmetry, we can see the consistency between the algebra and non (anti) commutative relation among (super) coordinates and interpret that symmetry of non (anti) commutative QFT is in fact twisted one. The key point is validity of our new twist element that guarantees non (anti) commutativity of space. It is checked in this paper for N = 1 case. We also comment on the possibility of noncommutative central charge coordinate. Finally, because our twist operation does not break the original algebra, we can claim that (twisted) SUSY is not broken in contrast to the string inspired N = 1/2 SUSY in N = 1 non(anti)commutative superspace.
引用
收藏
页码:7175 / 7188
页数:14
相关论文
共 32 条
[1]   Supersymmetric gauge theories on noncommutative superspace [J].
Araki, T ;
Ito, K ;
Ohtsuka, A .
PHYSICS LETTERS B, 2003, 573 (1-4) :209-216
[2]   Singlet deformation and non(anti)commutative N=2 supersymmetric U(1) gauge theory [J].
Araki, T ;
Ito, K .
PHYSICS LETTERS B, 2004, 595 :513-520
[3]  
BERKOVITS N, 2003, JHEP, V307
[4]   On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT [J].
Chaichian, M ;
Kulish, PP ;
Nishijima, K ;
Tureanu, A .
PHYSICS LETTERS B, 2004, 604 (1-2) :98-102
[5]  
CHAICHIAN M, HEPTH0409096
[6]  
Chari V., 1995, A Guide to Quantum Groups
[7]  
CHRYSSOMALAKOS C, HEPTH0408165
[8]   Non-commutative superspace from string theory [J].
de Boer, J ;
Grassi, PA ;
van Nieuwenhuizen, P .
PHYSICS LETTERS B, 2003, 574 (1-2) :98-104
[9]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[10]  
Ferrara S, 2000, J HIGH ENERGY PHYS