Radiomics: the process and the challenges

被引:1670
作者
Kumar, Virendra [1 ]
Gu, Yuhua [1 ]
Basu, Satrajit [2 ]
Berglund, Anders [3 ]
Eschrich, Steven A. [3 ]
Schabath, Matthew B. [4 ]
Forster, Kenneth [5 ]
Aerts, Hugo J. W. L. [6 ,8 ]
Dekker, Andre [6 ]
Fenstermacher, David [3 ]
Goldgof, Dmitry B. [2 ]
Hall, Lawrence O. [2 ]
Lambin, Philippe [6 ]
Balagurunathan, Yoganand [1 ]
Gatenby, Robert A. [7 ]
Gillies, Robert J. [1 ,7 ]
机构
[1] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Imaging & Metab, Tampa, FL 33612 USA
[2] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
[3] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Bioinformat, Tampa, FL 33612 USA
[4] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Epidemiol, Tampa, FL 33612 USA
[5] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Radiat Oncol, Tampa, FL 33612 USA
[6] Maastricht Univ, Med Ctr, GROW Sch Oncol & Dev Biol, Dept Radiat Oncol MAASTRO, Maastricht, Netherlands
[7] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Radiol, Tampa, FL 33612 USA
[8] Harvard Univ, Sch Publ Hlth, Dana Farber Canc Inst, Dept Biostat & Computat Biol,Computat Biol & Func, Boston, MA 02115 USA
关键词
Radiomics; Imaging; Image features; Tumor; Segmentation; CONTRAST-ENHANCED MRI; FALSE DISCOVERY RATE; ACTIVE CONTOUR; INTERACTIVE SEGMENTATION; SPATIAL HETEROGENEITY; SURVIVAL PREDICTION; IMAGE SEGMENTATION; FEATURE-SELECTION; TEXTURE ANALYSIS; TUMOR-SHAPE;
D O I
10.1016/j.mri.2012.06.010
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
"Radiomics" refers to the extraction and analysis of large amounts of advanced quantitative imaging features with high throughput from medical images obtained with computed tomography, positron emission tomography or magnetic resonance imaging. Importantly, these data are designed to be extracted from standard-of-care images, leading to a very large potential subject pool. Radiomics data are in a mineable form that can be used to build descriptive and predictive models relating image features to phenotypes or gene protein signatures. The core hypothesis of radiomics is that these models, which can include biological or medical data, can provide valuable diagnostic, prognostic or predictive information. The radiomics enterprise can be divided into distinct processes, each with its own challenges that need to be overcome: (a) image acquisition and reconstruction, (b) image segmentation and rendering, (c) feature extraction and feature qualification and (d) databases and data sharing for eventual (e) ad hoc informatics analyses. Each of these individual processes poses unique challenges. For example, optimum protocols for image acquisition and reconstruction have to be identified and harmonized. Also, segmentations have to be robust and involve minimal operator input. Features have to be generated that robustly reflect the complexity of the individual volumes, but cannot be overly complex or redundant. Furthermore, informatics databases that allow incorporation of image features and image annotations, along with medical and genetic data, have to be generated. Finally, the statistical approaches to analyze these data have to be optimized, as radiomics is not a mature field of study. Each of these processes will be discussed in turn, as well as some of their unique challenges and proposed approaches to solve them. The focus of this article will be on images of non-small-cell lung cancer. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1234 / 1248
页数:15
相关论文
共 97 条
[1]   Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and Recommendations [J].
不详 .
NEOPLASIA, 2009, 11 (02) :102-125
[2]  
[Anonymous], 2002, Principal components analysis
[3]   The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: A resource for the development of change-analysis software [J].
Armato, S. G., III ;
Meyer, C. R. ;
McNitt-Gray, M. F. ;
McLennan, G. ;
Reeves, A. P. ;
Croft, B. Y. ;
Clarke, L. P. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 84 (04) :448-456
[4]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[5]  
Basu S, 2011, IEEE SYS MAN CYBERN, P1306, DOI 10.1109/ICSMC.2011.6083840
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0 [J].
Boellaard, Ronald ;
O'Doherty, Mike J. ;
Weber, Wolfgang A. ;
Mottaghy, Felix M. ;
Lonsdale, Markus N. ;
Stroobants, Sigrid G. ;
Oyen, Wim J. G. ;
Kotzerke, Joerg ;
Hoekstra, Otto S. ;
Pruim, Jan ;
Marsden, Paul K. ;
Tatsch, Klaus ;
Hoekstra, Corneline J. ;
Visser, Eric P. ;
Arends, Bertjan ;
Verzijlbergen, Fred J. ;
Zijlstra, Josee M. ;
Comans, Emile F. I. ;
Lammertsma, Adriaan A. ;
Paans, Anne M. ;
Willemsen, Antoon T. ;
Beyer, Thomas ;
Bockisch, Andreas ;
Schaefer-Prokop, Cornelia ;
Delbeke, Dominique ;
Baum, Richard P. ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 (01) :181-200
[8]   Standards for PET Image Acquisition and Quantitative Data Analysis [J].
Boellaard, Ronald .
JOURNAL OF NUCLEAR MEDICINE, 2009, 50 :11S-20S
[9]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[10]   Is cross-validation better than resubstitution for ranking genes? [J].
Braga-Neto, U ;
Hashimoto, R ;
Dougherty, ER ;
Nguyen, DV ;
Carroll, RJ .
BIOINFORMATICS, 2004, 20 (02) :253-258