Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia

被引:239
作者
Leblois, A
Boraud, T
Meissner, W
Bergman, H
Hansel, D
机构
[1] Univ Paris 05, CNRS UMR 8119, Lab Neurophys & Physiol Syst Moteur, F-75270 Paris, France
[2] Univ Victor Segalen, CNRS UMR 5543, Neurophysiol Lab, F-33076 Bordeaux, France
[3] Hebrew Univ Jerusalem, Interdisciplinary Ctr Neural Computat, IL-91904 Jerusalem, Israel
[4] Univ Paris 05, Lab Franco Israelien Neurophysiol & Neurophys Sys, F-75270 Paris, France
关键词
neural network; models; action selection; oscillations; synchrony; Parkinson's disease;
D O I
10.1523/JNEUROSCI.5050-05.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Experiments performed in normal animals suggest that the basal ganglia (BG) are crucial in motor program selection. BG are also involved in movement disorders. In particular, BG neuronal activity in parkinsonian animals and patients is more oscillatory and more synchronous than in normal individuals. We propose a new model for the function and dysfunction of the motor part of BG. We hypothesize that the striatum, the subthalamic nucleus, the internal pallidum (GPi), the thalamus, and the cortex are involved in closed feedback loops. The direct (cortex-striatum-GPi-thalamus-cortex) and the hyperdirect loops (cortex-subthalamic nucleus-GPi-thalamus-cortex), which have different polarities, play a key role in the model. We show that the competition between these two loops provides the BG-cortex system with the ability to perform motor program selection. Under the assumption that dopamine potentiates corticostriatal synaptic transmission, we demonstrate that, in our model, moderate dopamine depletion leads to a complete loss of action selection ability. High depletion can lead to synchronous oscillations. These modifications of the network dynamical state stem from an imbalance between the feedback in the direct and hyperdirect loops when dopamine is depleted. Our model predicts that the loss of selection ability occurs before the appearance of oscillations, suggesting that Parkinson's disease motor impairments are not directly related to abnormal oscillatory activity. Another major prediction of our model is that synchronous oscillations driven by the hyperdirect loop appear in BG after inactivation of the striatum.
引用
收藏
页码:3567 / 3583
页数:17
相关论文
共 86 条
[1]   Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons [J].
Aizman, O ;
Brismar, H ;
Uhlén, P ;
Zettergren, E ;
Levey, AI ;
Forssberg, H ;
Greengard, P ;
Aperia, A .
NATURE NEUROSCIENCE, 2000, 3 (03) :226-230
[2]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[3]   PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX [J].
ALEXANDER, GE ;
DELONG, MR ;
STRICK, PL .
ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 :357-381
[4]  
APICELLA P, 1991, EXP BRAIN RES, V85, P491
[5]   Determination of response latency and its application to normalization of cross-correlation measures [J].
Baker, SN ;
Gerstein, GL .
NEURAL COMPUTATION, 2001, 13 (06) :1351-1377
[6]   Stepping out of the box: information processing in the neural networks of the basal ganglia [J].
Bar-Gad, I ;
Bergman, H .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (06) :689-695
[7]   Model of cortical-basal ganglionic processing: Encoding the serial order of sensory events [J].
Beiser, DG ;
Houk, JC .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (06) :3168-3188
[8]   REVERSAL OF RIGIDITY AND IMPROVEMENT IN MOTOR-PERFORMANCE BY SUBTHALAMIC HIGH-FREQUENCY STIMULATION IN MPTP-TREATED MONKEYS [J].
BENAZZOUZ, A ;
GROSS, C ;
FEGER, J ;
BORAUD, T ;
BIOULAC, B .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1993, 5 (04) :382-389
[9]   THE PRIMATE SUBTHALAMIC NUCLEUS .2. NEURONAL-ACTIVITY IN THE MPTP MODEL OF PARKINSONISM [J].
BERGMAN, H ;
WICHMANN, T ;
KARMON, B ;
DELONG, MR .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 72 (02) :507-520
[10]   REVERSAL OF EXPERIMENTAL PARKINSONISM BY LESIONS OF THE SUBTHALAMIC NUCLEUS [J].
BERGMAN, H ;
WICHMANN, T ;
DELONG, MR .
SCIENCE, 1990, 249 (4975) :1436-1438