On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors:: Case of MUSIC

被引:61
作者
Ferréol, A [1 ]
Larzabal, P
Viberg, M
机构
[1] THALES Commun, F-92700 Colombes, France
[2] ENS Cachan, SATIE, F-94235 Cachan, France
[3] ENS Cachan, SATIE, F-94235 Cachan, France
[4] Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden
关键词
calibration; direction of arrival (DOA) estimation; modeling errors; MUSIC; performance analysis;
D O I
10.1109/TSP.2005.861798
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper provides a new analytic expression of the bias and RMS error (root mean square) error of the estimated direction of arrival (DOA) in the presence of modeling errors. In [1]-[5], first-order approximations of the RMS error are derived, which are accurate for small enough perturbations. However, the previously available expressions are not able to capture the behavior of the estimation algorithm into the threshold region. In order to fill this gap, we provide a second-order performance analysis, which is valid in a larger interval of modeling errors. To this end, it is shown that the DOA estimation error for each signal source can be expressed as a ratio of Hermitian forms, with a stochastic vector containing the modeling error. Then, an analytic expression for the moments of such a Hermitian forms ratio is provided. Finally, a closed-form expression for the performance (bias and RMS error) is derived. Simulation results indicate that the new result is accurate into the region where the algorithm breaks down.
引用
收藏
页码:907 / 920
页数:14
相关论文
共 21 条
[1]  
[Anonymous], WILEY SERIES PROBABI
[2]   The effects of local scattering on direction of arrival estimation with MUSIC [J].
Astély, D ;
Ottersten, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) :3220-3234
[3]  
BRILLINGER DR, 1981, TIMES SERIES DATA AN
[4]  
FERREOL A, 2000, P IEEE INT C AC SPEE, V5, P3113
[5]  
FORCHINI G, 2001, DISTRIBUTION RATIO Q
[6]   A SENSITIVITY ANALYSIS OF THE MUSIC ALGORITHM [J].
FRIEDLANDER, B .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (10) :1740-1751
[7]   ON THE EXPECTATION OF THE PRODUCT OF 4 MATRIX-VALUED GAUSSIAN RANDOM-VARIABLES [J].
JANSSEN, PHM ;
STOICA, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (09) :867-870
[8]  
Johnson D., 1993, ARRAY SIGNAL PROCESS
[9]   FINITE-SAMPLE AND MODELING ERROR EFFECTS ON ESPRIT AND MUSIC DIRECTION ESTIMATORS [J].
KANGAS, A ;
STOICA, P ;
SODERSTROM, T .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1994, 141 (05) :249-255
[10]   Two decades of array signal processing research - The parametric approach [J].
Krim, H ;
Viberg, M .
IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (04) :67-94