Geometrical grouplets

被引:80
作者
Mallat, Stephane [1 ]
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
关键词
D O I
10.1016/j.acha.2008.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Grouplet orthogonal bases and tight frames are constructed with association fields that group points to take advantage of geometrical image regularities in space or time. These association fields have a multiscale geometry that can incorporate multiple junctions. A fast grouplet transform is computed with orthogonal multiscale hierarchical groupings. A grouplet transform applied to wavelet image coefficients defines an orthogonal basis or a tight frame of grouping bandlets. Applications to noise removal and image zooming are described. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 21 条
[1]  
[Anonymous], 1999, A Wavelet Tour of Signal Processing
[2]  
Bosking WH, 1997, J NEUROSCI, V17, P2112
[3]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[4]  
Candes E.J., 1999, Curvelets - a surprisingly effective nonadaptive representation for objects with edges
[5]  
CHANG CL, 2006, P IEEE INT C IM PROC
[6]  
CHAPPELIER V, 2005, P IEEE INT C IM PROC
[7]  
DO MN, 2005, IEEE T IMAG IN PRESS
[8]   Wedgelets: Nearly minimax estimation of edges [J].
Donoho, DL .
ANNALS OF STATISTICS, 1999, 27 (03) :859-897
[9]   CONTOUR INTEGRATION BY THE HUMAN VISUAL-SYSTEM - EVIDENCE FOR A LOCAL ASSOCIATION FIELD [J].
FIELD, DJ ;
HAYES, A ;
HESS, RF .
VISION RESEARCH, 1993, 33 (02) :173-193
[10]   Adaptive polyphase subband decomposition structures for image compression [J].
Gerek, ÖN ;
Çetin, AE .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (10) :1649-1660