Numerical simulation of the ordered catalyst layer in cathode of Proton Exchange Membrane Fuel Cells

被引:40
作者
Du, CY [1 ]
Cheng, XQ [1 ]
Yang, T [1 ]
Yin, GP [1 ]
Shi, PF [1 ]
机构
[1] Harbin Inst Technol, Dept Appl Chem, Harbin 150001, Peoples R China
关键词
PEM fuel cell; cathode; ordered catalyst layer; mathematical modeling;
D O I
10.1016/j.elecom.2005.09.022
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A steady-state, one-dimensional numerical model based on cylindrical electrode structure is presented to analyze the performance of the ordered cathode catalyst layer in Proton Exchange Membrane Fuel Cells. The model equations account for the Tafel kinetics of oxygen reduction reaction, proton migration, oxygen diffusion in the cylindrical electrolyte and the gas pores, oxygen distribution at the gas/electrolyte interface. The simulation results reveal that ordered catalyst layers have better performance than conventional catalyst layers due to the improvements of mass transport and the uniformity of the electrochemical reaction rate across the whole width of the catalyst layer. The influences of oxygen diffusivity in gas phase and electrolyte, and the proton conductivity have been shown. The limitation by oxygen diffusion in gas phase drives the active region of the catalyst layer to the catalyst layer/gas diffuser interface. The limitation by proton migration confines the active region of the catalyst layer to the membrane/catalyst layer interface. The limitation due to oxygen diffusion in electrolyte film maintains the uniform distribution of the active region throughout the ordered catalyst layer. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1411 / 1416
页数:6
相关论文
共 14 条
[1]  
[Anonymous], FUEL CELLS B
[2]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[3]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[4]   Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells [J].
Eikerling, M ;
Kornyshev, AA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1998, 453 (1-2) :89-106
[5]   Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC) [J].
Gamburzev, S ;
Appleby, AJ .
JOURNAL OF POWER SOURCES, 2002, 107 (01) :5-12
[6]   Investigation of mass-transport limitations in the solid polymer fuel cell cathode - I. Mathematical model [J].
Jaouen, F ;
Lindbergh, G ;
Sundholm, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) :A437-A447
[7]   HIGH-PERFORMANCE ELECTRODES WITH VERY-LOW PLATINUM LOADING FOR POLYMER ELECTROLYTE FUEL-CELLS [J].
KUMAR, GS ;
RAJA, M ;
PARTHASARATHY, S .
ELECTROCHIMICA ACTA, 1995, 40 (03) :285-290
[8]   PEM fuel cell electrodes [J].
Litster, S ;
McLean, G .
JOURNAL OF POWER SOURCES, 2004, 130 (1-2) :61-76
[9]   Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell [J].
Marr, C ;
Li, XG .
JOURNAL OF POWER SOURCES, 1999, 77 (01) :17-27
[10]   Mass transport in gas-diffusion electrodes: A diagnostic tool for fuel-cell cathodes [J].
Perry, ML ;
Newman, J ;
Cairns, EJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :5-15