Isothermal titration calorimetry: application to structure-based drug design

被引:40
作者
Ladbury, JE [1 ]
机构
[1] UCL, Dept Biochem & Mol Biol, London WC1E 6BT, England
关键词
thermodynamics; drug-receptor interactions; drug-protein; drug-DNA;
D O I
10.1016/S0040-6031(01)00674-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
The road to market for drug compounds is a treacherous one, generally involving a huge temporal and financial investment. The role of structure-based drug design or lead optimisation ranges wildly in importance in different pharmaceutical companies. The adoption of these aids to provide routes to high affinity ligands has not received widespread acceptance. This is based on a number of factors, from the perceived failings of such methods, to the belief that rapid screening of compound libraries alone is the most effective way to discover drugs. The panacea of being able to take a computer generated representation of the structure of a target site of a given biomolecule and rationally design an high affinity inhibiting compound has proved seemingly unreachable for three major reasons: (1) current capabilities in computing; (2) the requirement for atomic resolution structural detail; and (3) determination of how structural features can be related to the thermodynamics of interactions. It is the last of these points that this review seeks to address. In particular the use of isothermal titration calorimetry is discussed in the light of the accumulation of accurate thermodynamic data and examples are given where this has been applied to understand the structural aspects of formation of drug-biomolecular complexes. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:209 / 215
页数:7
相关论文
共 36 条
[1]  
Blandamer MJ, 1998, BIOCALORIMETRY, P5
[2]   Allosteric properties of inosine monophosphate dehydrogenase revealed through the thermodynamics of binding of inosine 5'-monophosphate and mycophenolic acid. Temperature dependent heat capacity of binding as a signature of ligand-coupled conformational equilibria [J].
Bruzzese, FJ ;
Connelly, PR .
BIOCHEMISTRY, 1997, 36 (34) :10428-10438
[3]  
Chaires JB, 1997, BIOPOLYMERS, V44, P201, DOI 10.1002/(SICI)1097-0282(1997)44:3<201::AID-BIP2>3.0.CO
[4]  
2-Z
[5]   Peptide ligands of pp60(c-src) SH2 domains: A thermodynamic and structural study [J].
Charifson, PS ;
Shewchuk, LM ;
Rocque, W ;
Hummel, CW ;
Jordan, SR ;
Mohr, C ;
Pacofsky, GJ ;
Peel, MR ;
Rodriguez, M ;
Sternbach, DD ;
Consler, TG .
BIOCHEMISTRY, 1997, 36 (21) :6283-6293
[6]  
Connelly P. R., 1997, BIOTECHNOL INTELL UN, P143
[7]   HEAT-CAPACITY CHANGES AND HYDROPHOBIC INTERACTIONS IN THE BINDING OF FK506 AND RAPAMYCIN TO THE FK506 BINDING-PROTEIN [J].
CONNELLY, PR ;
THOMSON, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (11) :4781-4785
[8]   ENTHALPY OF HYDROGEN-BOND FORMATION IN A PROTEIN-LIGAND BINDING REACTION [J].
CONNELLY, PR ;
ALDAPE, RA ;
BRUZZESE, FJ ;
CHAMBERS, SP ;
FITZGIBBON, MJ ;
FLEMING, MA ;
ITOH, S ;
LIVINGSTON, DJ ;
NAVIA, MA ;
THOMSON, JA ;
WILSON, KP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1964-1968
[9]  
CONNELLY PR, 1994, CURR REV BIOTECHNOL, V4, P100
[10]   Apparent molal heat capacities of ammo acids and other organic compounds [J].
Edsall, JT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1935, 57 :1506-1507