Synchronization in networks with random interactions: Theory and applications

被引:38
作者
Feng, JF [1 ]
Jirsa, VK
Ding, MZ
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Peoples R China
[2] Univ Warwick, Dept Math & Comp Sci, Coventry CV4 7AL, W Midlands, England
[3] Florida Atlantic Univ, Ctr Complex Syst & Brain Sci, Boca Raton, FL 33431 USA
[4] CNRS, UMR 6152, F-13288 Marseille 09, France
[5] Univ Florida, Dept Biomed Engn, Gainesville, FL 32611 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2180690
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Synchronization is an emergent property in networks of interacting dynamical elements. Here we review some recent results on synchronization in randomly coupled networks. Asymptotical behavior of random matrices is summarized and its impact on the synchronization of network dynamics is presented. Robert May's results on the stability of equilibrium points in linear dynamics are first extended to systems with time delayed coupling and then nonlinear systems where the synchronized dynamics can be periodic or chaotic. Finally, applications of our results to neuroscience, in particular, networks of Hodgkin-Huxley neurons, are included. (C) 2006 American Institute of Physics.
引用
收藏
页数:21
相关论文
共 86 条
[1]  
[Anonymous], 1974, Differential Equations, Dynamical Systems, and Linear Algebra
[2]   ASYMPTOTIC ANALYSIS OF THE LYAPUNOV EXPONENT AND ROTATION NUMBER OF THE RANDOM OSCILLATOR AND APPLICATIONS [J].
ARNOLD, L ;
PAPANICOLAOU, G ;
WIHSTUTZ, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (03) :427-450
[3]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[4]   Distributed delays facilitate amplitude death of coupled oscillators [J].
Atay, FM .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)
[5]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[6]   Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICAL REVIEW E, 2000, 62 (05) :6332-6345
[7]   Cluster synchronization modes in an ensemble of coupled chaotic oscillators [J].
Belykh, VN ;
Belykh, IV ;
Mosekilde, E .
PHYSICAL REVIEW E, 2001, 63 (03) :362161-362164
[8]   Short duty cycle destabilizes a half-center oscillator, but gap junctions can restabilize the anti-phase pattern [J].
Bem, T ;
Rinzel, J .
JOURNAL OF NEUROPHYSIOLOGY, 2004, 91 (02) :693-703
[9]   Interaction strengths in food webs: issues and opportunities [J].
Berlow, EL ;
Neutel, AM ;
Cohen, JE ;
de Ruiter, PC ;
Ebenman, B ;
Emmerson, M ;
Fox, JW ;
Jansen, VAA ;
Jones, JI ;
Kokkoris, GD ;
Logofet, DO ;
McKane, AJ ;
Montoya, JM ;
Petchey, O .
JOURNAL OF ANIMAL ECOLOGY, 2004, 73 (03) :585-598
[10]   Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses [J].
Bressloff, PC .
PHYSICAL REVIEW E, 1999, 60 (02) :2160-2170