The dissipated power in atomic force microscopy due to interactions with a capillary fluid layer

被引:12
作者
Hashemi, N. [1 ]
Paul, M. R. [1 ]
Dankowicz, H. [2 ]
Lee, M. [3 ]
Jhe, W. [3 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
[2] Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61801 USA
[3] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2980057
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study the power dissipated by the tip of an oscillating micron-scale cantilever as it interacts with a sample using a nonlinear model of the tip-surface force interactions that includes attractive, adhesive, repulsive, and capillary contributions. The force interactions of the model are entirely conservative and the dissipated power is due to the hysteretic nature of the interaction with the capillary fluid layer. Using numerical techniques tailored for nonlinear and discontinuous dynamical systems we compute the exact dissipated power over a range of experimentally relevant conditions. This is accomplished by computing precisely the fraction of oscillations that break the fluid meniscus. We find that the dissipated power as a function of the equilibrium cantilever-surface separation has a characteristic shape that we directly relate to the cantilever dynamics. Even for regions where the cantilever dynamics are highly irregular the fraction of oscillations breaking the fluid meniscus exhibits a simple trend. Using our results we also explore the accuracy of the often used harmonic approximation in determining dissipated power. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2980057]
引用
收藏
页数:5
相关论文
共 30 条
[1]   How to measure energy dissipation in dynamic mode atomic force microscopy [J].
Anczykowski, B ;
Gotsmann, B ;
Fuchs, H ;
Cleveland, JP ;
Elings, VB .
APPLIED SURFACE SCIENCE, 1999, 140 (3-4) :376-382
[2]   VAPOR ADSORPTION ON MICA AND SILICON - ENTROPY EFFECTS, LAYERING, AND SURFACE FORCES [J].
BEAGLEHOLE, D ;
CHRISTENSON, HK .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (08) :3395-3403
[3]   How does a tip tap? [J].
Burnham, NA ;
Behrend, OP ;
Oulevey, F ;
Gremaud, G ;
Gallo, PJ ;
Gourdon, D ;
Dupas, E ;
Kulik, AJ ;
Pollock, HM ;
Briggs, GAD .
NANOTECHNOLOGY, 1997, 8 (02) :67-75
[4]   CALCULATION OF THERMAL NOISE IN ATOMIC-FORCE MICROSCOPY [J].
BUTT, HJ ;
JASCHKE, M .
NANOTECHNOLOGY, 1995, 6 (01) :1-7
[5]   Force-distance curves by atomic force microscopy [J].
Cappella, B ;
Dietler, G .
SURFACE SCIENCE REPORTS, 1999, 34 (1-3) :1-+
[6]   Formation, manipulation, and elasticity measurement of a nanometric column of water molecules [J].
Choe, H ;
Hong, MH ;
Seo, Y ;
Lee, K ;
Kim, G ;
Cho, Y ;
Ihm, J ;
Jhe, W .
PHYSICAL REVIEW LETTERS, 2005, 95 (18)
[7]   Energy dissipation in tapping-mode atomic force microscopy [J].
Cleveland, JP ;
Anczykowski, B ;
Schmid, AE ;
Elings, VB .
APPLIED PHYSICS LETTERS, 1998, 72 (20) :2613-2615
[8]   Nonlinear dynamics as an essential tool for non-destructive characterization of soft nanostructures using tapping-mode atomic force microscopy [J].
Dankowicz, Harry .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1849) :3505-3520
[9]   Identification of nanoscale dissipation processes by dynamic atomic force microscopy [J].
Garcia, R. ;
Gomez, C. J. ;
Martinez, N. F. ;
Patil, S. ;
Dietz, C. ;
Magerle, R. .
PHYSICAL REVIEW LETTERS, 2006, 97 (01)
[10]   Dynamic atomic force microscopy methods [J].
García, R ;
Pérez, R .
SURFACE SCIENCE REPORTS, 2002, 47 (6-8) :197-301