Adenovirus E1A N-terminal amino acid sequence requirements for repression of transcription in vitro and in vivo correlate with those required for E1A interference with TBP-TATA complex formation

被引:19
作者
Boyd, JM [1 ]
Loewenstein, PM [1 ]
Tang, QQ [1 ]
Yu, L [1 ]
Green, M [1 ]
机构
[1] St Louis Univ, Sch Med, Inst Mol Virol, St Louis, MO 63110 USA
关键词
D O I
10.1128/JVI.76.3.1461-1474.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The adenovirus (Ad) E1A 243R oncoprotein encodes an N-terminal transcription repression domain that is essential for early viral functions, cell immortalization, and cell transformation. The transcription repression function requires sequences within amino acids 1 to 30 and 48 to 60. To elucidate the roles of the TATA-binding protein (TBP), p300, and the CREB-binding protein (CBP) in the mechanism(s) of E1A repression, we have constructed 29 amino acid substitution mutants and 5 deletion mutants spanning the first 30 amino acids within the E1A 1-80 polypeptide backbone. These mutant E1A polypeptides were characterized with regard to six parameters: the ability to repress transcription in vitro and in vivo, to disrupt TBP-TATA box interaction, and to bind TBP, p300, and CBP. Two regions within E1A residues 1 to 30, amino acids 2 to 6 and amino acid 20, are critical for E1A transcription repression in vitro and in vivo and for the ability to interfere with TBP-TATA interaction. Replacement of 6Cys with Ala in the first region yields the most defective mutant. Replacement of 20Leu with Ala, but not substitutions in flanking residues, yields a substantially defective phenotype. Protein binding assays demonstrate that replacement of 6Cys with Ala yields a mutant completely defective in interaction with TBP, p300, and CBP. Our findings are consistent with a model in which the E1A repression function involves interaction of E1A with p300/CBP and interference with the formation of a TBP-TATA box complex.
引用
收藏
页码:1461 / 1474
页数:14
相关论文
共 50 条
[1]   A FAMILY OF TRANSCRIPTIONAL ADAPTER PROTEINS TARGETED BY THE E1A ONCOPROTEIN [J].
ARANY, Z ;
NEWSOME, D ;
OLDREAD, E ;
LIVINGSTON, DM ;
ECKNER, R .
NATURE, 1995, 374 (6517) :81-84
[2]  
BOULUKOS KE, 1993, ONCOGENE, V8, P237
[3]   A REGION IN THE C-TERMINUS OF ADENOVIRUS-2/5 E1A PROTEIN IS REQUIRED FOR ASSOCIATION WITH A CELLULAR PHOSPHOPROTEIN AND IMPORTANT FOR THE NEGATIVE MODULATION OF T24-RAS MEDIATED TRANSFORMATION, TUMORIGENESIS AND METASTASIS [J].
BOYD, JM ;
SUBRAMANIAN, T ;
SCHAEPER, U ;
LAREGINA, M ;
BAYLEY, S ;
CHINNADURAI, G .
EMBO JOURNAL, 1993, 12 (02) :469-478
[4]   Radical mutations reveal TATA-box binding protein surfaces required for activated transcription in vivo [J].
Bryant, GO ;
Martel, LS ;
Burley, SK ;
Berk, AJ .
GENES & DEVELOPMENT, 1996, 10 (19) :2491-2504
[5]   A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity [J].
Chakravarti, D ;
Ogryzko, V ;
Kao, HY ;
Nash, A ;
Chen, HW ;
Nakatani, Y ;
Evans, RM .
CELL, 1999, 96 (03) :393-403
[6]   Role of CBP/P300 in nuclear receptor signalling [J].
Chakravarti, D ;
LaMorte, VJ ;
Nelson, MC ;
Nakajima, T ;
Schulman, IG ;
Juguilon, H ;
Montminy, M ;
Evans, RM .
NATURE, 1996, 383 (6595) :99-103
[7]   Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300 [J].
Chen, HW ;
Lin, RJ ;
Schiltz, RL ;
Chakravarti, D ;
Nash, A ;
Nagy, L ;
Privalsky, ML ;
Nakatani, Y ;
Evans, RM .
CELL, 1997, 90 (03) :569-580
[8]   PHOSPHORYLATED CREB BINDS SPECIFICALLY TO THE NUCLEAR-PROTEIN CBP [J].
CHRIVIA, JC ;
KWOK, RPS ;
LAMB, N ;
HAGIWARA, M ;
MONTMINY, MR ;
GOODMAN, RH .
NATURE, 1993, 365 (6449) :855-859
[9]   The regulation of E2F by pRB-family proteins [J].
Dyson, N .
GENES & DEVELOPMENT, 1998, 12 (15) :2245-2262
[10]   MOLECULAR-CLONING AND FUNCTIONAL ANAL OF THE ADENOVIRUS E1A-ASSOCIATED 300-KD PROTEIN (P300) REVEALS A PROTEIN WITH PROPERTIES OF A TRANSCRIPTIONAL ADAPTER [J].
ECKNER, R ;
EWEN, ME ;
NEWSOME, D ;
GERDES, M ;
DECAPRIO, JA ;
LAWRENCE, JB ;
LIVINGSTON, DM .
GENES & DEVELOPMENT, 1994, 8 (08) :869-884