The successful regeneration of periodontal tissues is dependent, in part, on the ability of cells to reconstitute the mineralized tissues of cementum and bone. The aim of the present study was to characterize regeneration-associated cells in terms of their ability to express mineralized tissue macromolecules. Following guided tissue regeneration, cell cultures were established from regenerating tissue, periodontal ligament, and gingiva. Additionally, these cells were transfected, and single-cell-derived clones were established. Following treatment with platelet-derived growth factor-BB and insulin-derived growth factor-1, the presence of mRNA for alkaline phosphatase, osteocalcin, bone sialoprotein, osteopontin, and bone morphogenetic proteins-2 and -4 was assessed. The three cell types expressed similar mRNA levels for alkaline phosphatase, bone morphogenetic protein-2, and bone morphogenetic protein-4, whereas the expression of osteopontin, osteocalcin, and bone sialoprotein was greater in the periodontal ligament and regenerating tissue fibroblasts compared with the gingival fibroblasts. The two growth factors did not affect the expression of any of the genes. This study has identified markers that correlate with the known ability of periodontal ligament and regenerating tissue-derived fibroblasts to facilitate regeneration of the mineralized tissues of the periodontium.