A decade of histone acetylation: Marking eukaryotic chromosomes with specific codes

被引:111
作者
Kimura, A
Matsubara, K
Horikoshi, M
机构
[1] Univ Tokyo, Int Mol & Cellular Biosci, Dev Biol Lab, Bunkyo Ku, Tokyo 1130032, Japan
[2] Japan Sci & Technol Agcy, JST, ERATO, Horikoshi Gene Selector Project, Tsukuba, Ibaraki 3002635, Japan
基金
日本科学技术振兴机构;
关键词
allocation; chromatin; chromosome border; epigenetic regulation; histone; histone acetyltransferases (HATs); histone code; lysine specificity; nucleosome; two-step classification;
D O I
10.1093/jb/mvi184
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Post-translational modification of histones, a major protein component of eukaryotic chromosomes, contributes to the epigenetic regulation of gene expression. Distinct patterns of histone modification are observed at specific chromosomal regions and affect various reactions on chromosomes (transcription, replication, repair, and recombination). Histone modification has long been proposed to have a profound effect on eukaryotic gene expression since its discovery in 1964. Verification of this idea, however, was difficult until the identification of enzymes responsible for histone modifications. Ten years ago (1995), histone acetyltransferases (HATs), which acetylate lysine residues in histone amino-terminal tail regions, were isolated. HATs are involved in the regulation of both promoter-specific transcription and long-range/chromosome-wide transcription. Analyses of HATs and other modification enzymes have revealed mechanisms of epigenetic regulation that are mediated by post-translational modifications of histones. Here we review some major advances in the field, with emphasis on the lysine specificity of the acetylation reaction and on the regulation of gene expression over broad regions.
引用
收藏
页码:647 / 662
页数:16
相关论文
共 166 条
[1]   A conserved motif common to the histone acetyltransferase Esa1 and the histone deacetylase Rpd3 [J].
Adachi, N ;
Kimura, A ;
Horikoshi, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (38) :35688-35695
[2]   Deciphering the transcriptional histone acetylation code for a human gene [J].
Agalioti, T ;
Chen, GY ;
Thanos, D .
CELL, 2002, 111 (03) :381-392
[3]   Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila [J].
Akhtar, A ;
Becker, PB .
MOLECULAR CELL, 2000, 5 (02) :367-375
[4]   NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p [J].
Allard, S ;
Utley, RT ;
Savard, J ;
Clarke, A ;
Grant, P ;
Brandl, CJ ;
Pillus, L ;
Workman, JL ;
Côté, J .
EMBO JOURNAL, 1999, 18 (18) :5108-5119
[5]   ACETYLATION + METHYLATION OF HISTONES + THEIR POSSIBLE ROLE IN REGULATION OF RNA SYNTHESIS [J].
ALLFREY, VG ;
FAULKNER, R ;
MIRSKY, AE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1964, 51 (05) :786-+
[6]   Crystal structure of the histone acetyltransferase Hpa2:: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily [J].
Angus-Hill, ML ;
Dutnall, RN ;
Tafrov, ST ;
Sternglanz, R ;
Ramakrishnan, V .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (05) :1311-1325
[7]   Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation [J].
Balasubramanian, R ;
Pray-Grant, MG ;
Selleck, W ;
Grant, PA ;
Tan, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7989-7995
[8]   The CBP co-activator is a histone acetyltransferase [J].
Bannister, AJ ;
Kouzarides, T .
NATURE, 1996, 384 (6610) :641-643
[9]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[10]   Yeast enhancer of Polycomb defines global Esal-dependent acetylation of chromatin [J].
Boudreault, AA ;
Cronier, D ;
Selleck, W ;
Lacoste, N ;
Utley, RT ;
Allard, SP ;
Savard, J ;
Lane, WS ;
Tan, S ;
Côté, J .
GENES & DEVELOPMENT, 2003, 17 (11) :1415-1428