Maximum likelihood estimation and uniform inference with sporadic identification failure

被引:23
作者
Andrews, Donald W. K. [1 ]
Cheng, Xu [2 ]
机构
[1] Yale Univ, Cowles Fdn, New Haven, CT 06520 USA
[2] Univ Penn, Dept Econ, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Asymptotic size; Binary choice; Confidence set; Estimator; Identification; Likelihood; Nonlinear models; Test; Smooth transition threshold autoregression; Weak identification; TRANSITION AUTOREGRESSIVE MODELS; INSTRUMENTAL VARIABLES REGRESSION; WEAK IDENTIFICATION; GMM; PARAMETERS; THEOREMS;
D O I
10.1016/j.jeconom.2012.10.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper analyzes the properties of a class of estimators, tests, and confidence sets (CSs) when the parameters are not identified in parts of the parameter space. Specifically, we consider estimator criterion functions that are sample averages and are smooth functions of a parameter theta. This includes log likelihood, quasi-log likelihood, and least squares criterion functions. We determine the asymptotic distributions of estimators under lack of identification and under weak, semi-strong, and strong identification. We determine the asymptotic size (in a uniform sense) of standard t and quasi-likelihood ratio (QLR) tests and CSs. We provide methods of constructing QLR tests and CSs that are robust to the strength of identification. The results are applied to two examples: a nonlinear binary choice model and the smooth transition threshold autoregressive (STAR) model. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 56
页数:21
相关论文
共 37 条