Long-Distance, Graft-Transmissible Action of Arabidopsis FLOWERING LOCUS T Protein to Promote Flowering

被引:213
作者
Notaguchi, Michitaka [2 ]
Abe, Mitsutomo [1 ]
Kimura, Takahiro [2 ]
Daimon, Yasufumi [1 ]
Kobayashi, Toshinori [1 ]
Yamaguchi, Ayako [1 ]
Tomita, Yuki [1 ]
Dohi, Koji [3 ]
Mori, Masashi [3 ]
Araki, Takashi [1 ]
机构
[1] Kyoto Univ, Grad Sch Biostudies, Div Integrated Life Sci, Sakyo Ku, Kyoto 6068501, Japan
[2] Kyoto Univ, Grad Sch Sci, Dept Bot, Sakyo Ku, Kyoto 6068502, Japan
[3] Ishikawa Prefectural Univ, Res Inst Agr Resources, Nonoichi, Ishikawa 9218836, Japan
基金
日本科学技术振兴机构;
关键词
D O I
10.1093/pcp/pcn154
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Day length perceived by a leaf is a major environmental factor that controls the timing of flowering. It has been believed that a mobile, long-distance signal called florigen is produced in the leaf under inductive day length conditions, and is transported to the shoot apex where it triggers floral morphogenesis. Grafting experiments have shown that florigen is transmissible from a donor plant that has been subjected to inductive day length to an uninduced recipient plant. However, the nature of florigen has long remained elusive. Arabidopsis FLOWERING LOCUS T (FT) is expressed in cotyledons and leaves in response to inductive long days (LDs). FT protein, with a basic region/leucine zipper (bZIP) transcription factor FD, acts in the shoot apex to induce target meristem identity genes such as APETALA1 (AP1) and initiates floral morphogenesis. Recent studies have provided evidence that the FT protein in Arabidopsis and corresponding proteins in other species are an important part of florigen. Our work shows that the FT activity, either from overexpressing or inducible transgenes or from the endogenous gene, to promote flowering is transmissible through a graft junction, and that an FT protein with a T7 tag is transported from a donor scion to the apical region of recipient stock plants and becomes detectable within a day or two. The sequence and structure of mRNA are not of critical importance for the long-distance action of the FT gene. These observations led to the conclusion that the FT protein, but not mRNA, is the essential component of florigen.
引用
收藏
页码:1645 / 1658
页数:14
相关论文
共 42 条
[1]   FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J].
Abe, M ;
Kobayashi, Y ;
Yamamoto, S ;
Daimon, Y ;
Yamaguchi, A ;
Ikeda, Y ;
Ichinoki, H ;
Notaguchi, M ;
Goto, K ;
Araki, T .
SCIENCE, 2005, 309 (5737) :1052-1056
[2]   A divergent external loop confers antagonistic activity on floral regulators FT and TFL1 [J].
Ahn, JH ;
Miller, D ;
Winter, VJ ;
Banfield, MJ ;
Lee, JH ;
Yoo, SY ;
Henz, SR ;
Brady, RL ;
Weigel, D .
EMBO JOURNAL, 2006, 25 (03) :605-614
[3]   CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis [J].
An, HL ;
Roussot, C ;
Suárez-López, P ;
Corbesler, L ;
Vincent, C ;
Piñeiro, M ;
Hepworth, S ;
Mouradov, A ;
Justin, S ;
Turnbull, C ;
Coupland, G .
DEVELOPMENT, 2004, 131 (15) :3615-3626
[4]   CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees [J].
Böhlenius, H ;
Huang, T ;
Charbonnel-Campaa, L ;
Brunner, AM ;
Jansson, S ;
Strauss, SH ;
Nilsson, O .
SCIENCE, 2006, 312 (5776) :1040-1043
[5]  
Böhlenius H, 2007, SCIENCE, V316, P367
[6]   Inflorescence commitment and architecture in Arabidopsis [J].
Bradley, D ;
Ratcliffe, O ;
Vincent, C ;
Carpenter, R ;
Coen, E .
SCIENCE, 1997, 275 (5296) :80-83
[7]  
CHAILAKHYAN MK, 1937, DOKL AKAD NAUK SSSR, V16, P227
[8]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[9]   TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture [J].
Conti, Lucio ;
Bradley, Desmond .
PLANT CELL, 2007, 19 (03) :767-778
[10]   FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis [J].
Corbesier, Laurent ;
Vincent, Coral ;
Jang, Seonghoe ;
Fornara, Fabio ;
Fan, Qingzhi ;
Searle, Iain ;
Giakountis, Antonis ;
Farrona, Sara ;
Gissot, Lionel ;
Turnbull, Colin ;
Coupland, George .
SCIENCE, 2007, 316 (5827) :1030-1033