Genome-wide expression profile of steroid response in Saccharomyces cerevisiae

被引:22
作者
Banerjee, D
Pillai, B
Karnani, N
Mukhopadhyay, G
Prasad, R [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Life Sci, Membrane Biol Lab, New Delhi 110067, India
[2] Inst Genom & Integrat Biol, Delhi 110007, India
[3] Jawaharlal Nehru Univ, Special Ctr Mol Med, New Delhi 10067, India
关键词
Saccharomyces cerevisiae; stress response; progesterone; estradiol; steroid response element; microarray; profiling;
D O I
10.1016/j.bbrc.2004.03.053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The response of the yeast Saccharomyces cerevisiae to human steroid hormone progesterone was studied by genomic expression profiling. The transcription profile data revealed that steroid response was a global phenomenon wherein a host of genes were affected. For example, 163 genes were upregulated and 40 genes were downregulated, by at least more than twofold. The major categories of upregulated genes included protein destination (15%), metabolism (14%), transport facilitation (12%), cell growth, cell division, and DNA synthesis (8%), and transcription (7%), while metabolism (22%), transcription (11%), intracellular transport (10%), cell growth, cell division, and DNA synthesis (10%), energy (8%), cell rescue, defense, and cell death (6%), and protein synthesis (6%) encoding genes were downregulated. Notwithstanding the fact that yeast cells do not possess commonly occurring steroid response cascade similar to higher eukaryotes, our results demonstrate that a short-term exposure to progesterone results in differential regulation of predominantly stress responsive genes. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:406 / 413
页数:8
相关论文
共 36 条
[1]   Steroid transport, accumulation, and antagonism of P-glycoprotein in multidrug-resistant cells [J].
Barnes, KM ;
Dickstein, B ;
Cutler, GB ;
Fojo, T ;
Bates, SE .
BIOCHEMISTRY, 1996, 35 (15) :4820-4827
[2]   Population genomics of drug resistance in Candida albicans [J].
Cowen, LE ;
Nantel, A ;
Whiteway, MS ;
Thomas, DY ;
Tessier, DC ;
Kohn, LM ;
Anderson, JB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (14) :9284-9289
[3]  
DAS M, 1985, BIOCHEM INT, V11, P171
[4]   A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance [J].
de Micheli, M ;
Bille, J ;
Schueller, C ;
Sanglard, D .
MOLECULAR MICROBIOLOGY, 2002, 43 (05) :1197-1214
[5]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[6]   AN ESTROGEN-BINDING PROTEIN AND ENDOGENOUS LIGAND IN SACCHAROMYCES-CEREVISIAE - POSSIBLE HORMONE RECEPTOR SYSTEM [J].
FELDMAN, D ;
DO, Y ;
BURSHELL, A ;
STATHIS, P ;
LOOSE, DS .
SCIENCE, 1982, 218 (4569) :297-298
[7]  
FELDMAN D, 1996, STEROID BINDING PROT
[8]   Genomic expression programs in the response of yeast cells to environmental changes [J].
Gasch, AP ;
Spellman, PT ;
Kao, CM ;
Carmel-Harel, O ;
Eisen, MB ;
Storz, G ;
Botstein, D ;
Brown, PO .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) :4241-4257
[9]  
Gujjar PR, 1997, ANN CLIN LAB SCI, V27, P151
[10]   Detection and expression of corticosteroid binding protein gene in human pathogenic fungi [J].
Hernández-Hernández, F ;
López-Martínez, R ;
Camacho-Arroyo, I ;
Mendoza-Rodríguez, CA ;
Cerbón, MA .
MYCOPATHOLOGIA, 1998, 143 (03) :127-130