Statistical comparison of satellite-retrieved precipitation products with rain gauge observations over Bangladesh

被引:41
作者
Islam, Md Atiqul [1 ]
机构
[1] Khulna Univ Engn & Technol, Dept Civil Engn, Khulna 9203, Bangladesh
关键词
Rain gauge observation; satellite-based precipitation; Bangladesh; extreme; PASSIVE MICROWAVE; RIVER-BASINS; EAST-AFRICA; GSMAP PROJECT; ANALYSIS TMPA; VALIDATION; RESOLUTION; PERSIANN; PERIODS; SYSTEM;
D O I
10.1080/01431161.2018.1433890
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this investigation, six satellite-derived precipitation products namely Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), Climate Prediction Centre (CPC) Morphing Technique (CMORPH), Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) final run both non gauge-calibrated (IMERG) and gauge-calibrated (IMERG-GC), and Global Satellite Mapping of Precipitation (GSMaP) for GPM both non gauge-calibrated (GSMaP) and gauge-calibrated (GSMaP-GC) are evaluated over Bangladesh, using ground-based rain gauge observations as reference over a 3years period from January 2014 to December 2016. Nine widely used categorical and volumetric statistical matrices such as bias, probability of detection, volumetric hit index, false alarm ratio, volumetric false alarm ratio, critical success index, volumetric critical success index, miss index, and volumetric miss index are employed to exploit the performance of the precipitation products in detecting extremes above different quantile thresholds (i.e. 50%, 75%, and 90% quantiles) for various temporal window (i.e. 3h, 6h, 12h, and 24h). The bias values show that none of the satellite rainfall data sets are ideal for detecting extreme rainfall accumulations. In fact, all products lose their detection skills consistently as the extreme precipitation thresholds (50%, 75%, and 90% quantiles) increase. The results indicate that PERSIANN shows the worst performance over the study region. Overall, GSMaP-GC performs better than the other precipitation products. However, the FAR values of GSMaP are also higher over monsoon and post-monsoon months. The categorical and volumetric scores reveal that the detection skill increases remarkably for all rainfall data sets throughout the year with the increase of extreme quantile thresholds. At higher temporal accumulations, the detection capability of the products also improves considerably, and this improvement is more significant during monsoon period. The performance is relatively poor for all precipitation data sets over the cold months. In general, all six satellite precipitation products are doing well in detecting the occurrence of rainfall but are not so good in estimating the amount of rainfall.
引用
收藏
页码:2906 / 2936
页数:31
相关论文
共 51 条
[1]   Extended contingency table: Performance metrics for satellite observations and climate model simulations [J].
AghaKouchak, A. ;
Mehran, A. .
WATER RESOURCES RESEARCH, 2013, 49 (10) :7144-7149
[2]   Evaluation of satellite-retrieved extreme precipitation rates across the central United States [J].
AghaKouchak, A. ;
Behrangi, A. ;
Sorooshian, S. ;
Hsu, K. ;
Amitai, E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[3]   GSMaP Passive Microwave Precipitation Retrieval Algorithm : Algorithm Description and Validation [J].
Aonashi, Kazumasa ;
Awaka, Jun ;
Hirose, Masafumi ;
Kozu, Toshikaki ;
Kubota, Takuji ;
Liu, Guosheng ;
Shige, Shoichi ;
Kida, Satoshi ;
Seto, Sinta ;
Takahashi, Nobuhiro ;
Takayabu, Yukari N. .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2009, 87A :119-136
[4]   Hydrologic evaluation of satellite precipitation products over a mid-size basin [J].
Behrangi, Ali ;
Khakbaz, Behnaz ;
Jaw, Tsou Chun ;
AghaKouchak, Amir ;
Hsu, Kuolin ;
Sorooshian, Soroosh .
JOURNAL OF HYDROLOGY, 2011, 397 (3-4) :225-237
[5]   Evaluation of Monthly Satellite-Derived Precipitation Products over East Africa [J].
Cattani, E. ;
Merino, A. ;
Levizzani, V. .
JOURNAL OF HYDROMETEOROLOGY, 2016, 17 (10) :2555-2573
[6]   Societal impacts and vulnerability to floods in Bangladesh and Nepal [J].
Dewan, Tanvir H. .
WEATHER AND CLIMATE EXTREMES, 2015, 7 :36-42
[7]   Validation of high-resolution satellite rainfall products over complex terrain [J].
Dinku, T. ;
Chidzambwa, S. ;
Ceccato, P. ;
Connor, S. J. ;
Ropelewski, C. F. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (14) :4097-4110
[8]   Validation of satellite rainfall products over East Africa's complex topography [J].
Dinku, T. ;
Ceccato, P. ;
Grover-Kopec, E. ;
Lemma, M. ;
Connor, S. J. ;
Ropelewski, C. F. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (7-8) :1503-1526
[9]   Challenges of satellite rainfall estimation over mountainous and arid parts of east Africa [J].
Dinku, Tufa ;
Ceccato, Pietro ;
Connor, Stephen J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (21) :5965-5979
[10]   Validation and Intercomparison of Satellite Rainfall Estimates over Colombia [J].
Dinku, Tufa ;
Ruiz, Franklyn ;
Connor, Stephen J. ;
Ceccato, Pietro .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2010, 49 (05) :1004-1014