A genetic algorithm-based, hybrid machine learning approach to model selection

被引:76
作者
Bies, RR [1 ]
Muldoon, MF
Pollock, BG
Manuck, S
Smith, G
Sale, ME
机构
[1] Univ Pittsburgh, Dept Pharmaceut Sci & Psychiat, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Ctr Clin Pharmacol, Pittsburgh, PA USA
[3] Univ Toronto, Rotman Res Inst, Ctr Addict & Mental Hlth, Toronto, ON, Canada
[4] Univ Pittsburgh, Dept Psychol, Pittsburgh, PA 15260 USA
[5] Zucker Hillside Hosp, Albert Einstein Coll Med, Glen Oaks, NY USA
[6] Next Level Solut, Raleigh, NC USA
关键词
nonlinear mixed effects modeling; covariate selection; automated machine learning; genetic algorithm; population paramacokinetics; model building;
D O I
10.1007/s10928-006-9004-6
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
We describe a general and robust method for identification of an optimal non-linear mixed effects model. This includes structural, inter-individual random effects, covariate effects and residual error models using machine learning. This method is based on combinatorial optimization using genetic algorithm.
引用
收藏
页码:195 / 221
页数:27
相关论文
共 26 条
[1]  
AKAIKE H, 2 INT S INF THEOR
[2]  
BEST NG, 1997, CODA CONVERGENCE DIA
[3]  
BIES R, 2003, PAGE M
[4]  
Chambers L., 1995, PRACTICAL HDB GENETI, V1
[5]  
COFOLGA TA, 2005, COMPUT BIOL CHEM
[6]  
Givens G, 2005, COMPUTATIONAL STAT
[7]  
Goldberg D.E., 1989, OPTIMIZATION MACHINE
[8]  
HANOVER MD, GLOBOMAX
[9]  
Heckerling PS, 2005, METHOD INFORM MED, V44, P89
[10]  
Jonsson EN, 1999, COMPUT METH PROG BIO, V58, P51, DOI 10.1016/S0169-2607(98)00067-4