An efficient hybrid conjugate gradient method for unconstrained optimization

被引:201
作者
Dai, YH [1 ]
Yuan, Y [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China
关键词
unconstrained optimization; conjugate gradient method; line search; descent property; global convergence;
D O I
10.1023/A:1012930416777
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recently, we propose a nonlinear conjugate gradient method, which produces a descent search direction at every iteration and converges globally provided that the cline search satisfies the weak Wolfe conditions. In this paper, we will study methods related to the new nonlinear conjugate gradient method. Specifically, if the size of the scalar A with respect to the one in the new method belongs to some interval, then the corresponding methods are proved to be globally, convergent; otherwise, we are able to construct a convex quadratic example showing that the methods need not converge. Numerical experiments are made for two combinations of the new method and the Hestenes-Stiefel conjugate gradient method. The initial results show that, one of the hybrid methods is especially efficient for the given test problems.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 20 条
[1]   DESCENT PROPERTY AND GLOBAL CONVERGENCE OF THE FLETCHER REEVES METHOD WITH INEXACT LINE SEARCH [J].
ALBAALI, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (01) :121-124
[2]   Convergence properties of the Fletcher-Reeves method [J].
Dai, YH ;
Yuan, Y .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :155-164
[3]   A nonlinear conjugate gradient method with a strong global convergence property [J].
Dai, YH ;
Yuan, Y .
SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) :177-182
[4]  
Dai YH, 1998, ADV NONLINEAR PROGRA, P251
[5]  
DAI YH, 1996, ADV MATH, V25, P552
[6]   FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS [J].
FLETCHER, R ;
REEVES, CM .
COMPUTER JOURNAL, 1964, 7 (02) :149-&
[7]  
Fletcher R, 1987, PRACTICAL METHODS OP, V1
[8]   GLOBAL CONVERGENCE PROPERTIES OF CONJUGATE GRADIENT METHODS FOR OPTIMIZATION [J].
Gilbert, Jean Charles ;
Nocedal, Jorge .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (01) :21-42
[9]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[10]   GLOBAL CONVERGENCE RESULT FOR CONJUGATE-GRADIENT METHODS [J].
HU, YF ;
STOREY, C .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 71 (02) :399-405