Sequences of spanning trees and a fixed tree theorem

被引:25
作者
Aichholzer, O
Aurenhammer, F [1 ]
Hurtado, F
机构
[1] Graz Univ Technol, Inst Theoret Comp Sci, A-8010 Graz, Austria
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 2, Barcelona, Spain
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2002年 / 21卷 / 1-2期
关键词
Euclidean minimum spanning tree; crossing-free geometric graph; edge operations; canonical sequence of trees; constrained Delaunay triangulation;
D O I
10.1016/S0925-7721(01)00042-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T-S be the set of all crossing-free spanning trees of a planar n-point set S. We prove that T-S contains, for each of its members T, a length-decreasing sequence of trees T-0,...,T-k such that T-0 = T, T-k = MST(S), T-i does not cross Ti-1 for i = l,...,k, and k = O(logn). Here MST(S) denotes the Euclidean minimum spanning tree of the point set S. As an implication, the number of length-improving and planar edge moves needed to transform a tree T is an element of T-S into MST(S) is only O(n log n). Moreover, it is possible to transform any two trees in T-S into each other by means of a local and constant-size edge slide operation. Applications of these results to morphing of simple polygons are possible by using a crossing-free spanning tree as a skeleton description of a polygon. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 18 条
[1]   Matching shapes with a reference point [J].
Aichholzer, O ;
Alt, H ;
Rote, G .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1997, 7 (04) :349-363
[2]   Matching convex shapes with respect to the symmetric difference [J].
Alt, H ;
Fuchs, U ;
Rote, G ;
Weber, G .
ALGORITHMICA, 1998, 21 (01) :89-103
[3]   COMPUTING THE FRECHET DISTANCE BETWEEN 2 POLYGONAL CURVES [J].
ALT, H ;
GODAU, M .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1995, 5 (1-2) :75-91
[4]  
[Anonymous], 1982, Annals of Discrete Mathematics
[5]  
Aurenhammer F, 2000, HANDBOOK OF COMPUTATIONAL GEOMETRY, P201, DOI 10.1016/B978-044482537-7/50006-1
[6]   Reverse search for enumeration [J].
Avis, D ;
Fukuda, K .
DISCRETE APPLIED MATHEMATICS, 1996, 65 (1-3) :21-46
[7]  
BOSE P, UNPUB ROTATION FLIPS
[8]  
CHEW LP, 1989, ALGORITHMICA, V4, P97, DOI 10.1007/BF01553881
[9]  
Fortune S., 1995, COMPUTING EUCLIDEAN, P225
[10]   Lower bounds on the number of crossing-free subgraphs of KN [J].
García, A ;
Noy, M ;
Tejel, J .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2000, 16 (04) :211-221