On matroid intersection adjacency

被引:7
作者
Iwata, S [1 ]
机构
[1] Univ Tokyo, Dept Math Engn & Informat Phys, Tokyo 1138656, Japan
关键词
D O I
10.1016/S0012-365X(01)00167-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to a simple alternative proof for a theorem of Frank and Tardos (Math. Programming 42 (1988) 489) on adjacency of extreme points in the common base polytope of a pair of matroids. The new proof relies merely on the simultaneous base exchange axiom, independent of the linear inequality description of the polytope due to Edmonds (Guy et al. (Eds.), Combinatorial Structures and Their Applications, Gordon and Breach, London, 1970, p. 69). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:277 / 281
页数:5
相关论文
共 6 条
[1]  
Brualdi R. A., 1969, Bulletin of the Australian Mathematical Society, V1, P161, DOI DOI 10.1017/S000497270004140X
[2]   MAXIMUM MATCHING AND A POLYHEDRON WITH O'1-VERTICES [J].
EDMONDS, J .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2) :125-+
[3]  
Edmonds J., 1970, Combinatorial Structures and Their Applications, P69, DOI DOI 10.1007/3-540-36478
[4]   GENERALIZED POLYMATROIDS AND SUBMODULAR FLOWS [J].
FRANK, A ;
TARDOS, E .
MATHEMATICAL PROGRAMMING, 1988, 42 (03) :489-563
[5]  
Murota K., 2000, MATRICES MATROIDS SY
[6]   On the abstract properties of linear dependence [J].
Whitney, H .
AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 :509-533