Isogeometric fluid-structure interaction: theory, algorithms, and computations

被引:731
作者
Bazilevs, Y. [1 ]
Calo, V. M. [2 ]
Hughes, T. J. R. [2 ]
Zhang, Y. [3 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
blood flow; cardiovascular modeling; fluid-structure interaction; hyperelastic solids; incompressible fluids; isogeometric analysis; mesh movement; moving domains; NURBS; shape derivatives; space-time Piola transformation;
D O I
10.1007/s00466-008-0315-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a fully-coupled monolithic formulation of the fluid-structure interaction of an incompressible fluid on a moving domain with a nonlinear hyperelastic solid. The arbitrary Lagrangian-Eulerian description is utilized for the fluid subdomain and the Lagrangian description is utilized for the solid subdomain. Particular attention is paid to the derivation of various forms of the conservation equations; the conservation properties of the semi-discrete and fully discretized systems; a unified presentation of the generalized-alpha time integration method for fluid-structure interaction; and the derivation of the tangent matrix, including the calculation of shape derivatives. A NURBS-based isogeometric analysis methodology is used for the spatial discretization and three numerical examples are presented which demonstrate the good behavior of the methodology.
引用
收藏
页码:3 / 37
页数:35
相关论文
共 76 条
[1]   A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance [J].
Abedi, R. ;
Petracovici, B. ;
Haber, R. B. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) :3247-3273
[2]   The role of continuity in residual-based variational multiscale modeling of turbulence [J].
Akkerman, I. ;
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Hulshoff, S. .
COMPUTATIONAL MECHANICS, 2008, 41 (03) :371-378
[3]  
[Anonymous], THESIS STANFORD U
[4]  
[Anonymous], 1963, Differential Forms with applications to the Physical Sciences
[5]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[6]   Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Reali, A. ;
Scovazzi, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :173-201
[7]   Weak Dirichlet boundary conditions for wall-bounded turbulent flows [J].
Bazilevs, Y. ;
Michler, C. ;
Calo, V. M. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (49-52) :4853-4862
[8]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[9]   Weak imposition of Dirichlet boundary conditions in fluid mechanics [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTERS & FLUIDS, 2007, 36 (01) :12-26
[10]   Isogeometric fluid-structure interaction analysis with applications to arterial blood flow [J].
Bazilevs, Y. ;
Calo, V. M. ;
Zhang, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2006, 38 (4-5) :310-322