Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem

被引:233
作者
Aldous, D
Diaconis, P
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
D O I
10.1090/S0273-0979-99-00796-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a simple one-person card game, patience sorting. Its analysis leads to a broad circle of ideas linking Young tableaux with the longest increasing subsequence of a random permutation via the Schensted correspondence. A recent highlight of this area is the work of Baik-Deift-Johansson which yields limiting probability laws via hard analysis of Toeplitz determinants.
引用
收藏
页码:413 / 432
页数:20
相关论文
共 57 条