Mesoporous Siliconiobium Phosphate as a Pure Bronsted Acid Catalyst with Excellent Performance for the Dehydration of Glycerol to Acrolein

被引:28
作者
Choi, Youngbo [1 ]
Park, Dae Sung [1 ]
Yun, Hyeong Jin [1 ]
Baek, Jayeon [1 ]
Yun, Danim [1 ]
Yi, Jongheop [1 ]
机构
[1] Seoul Natl Univ, Sch Chem & Biol Engn, Inst Chem Proc, World Class Univ Program Chem Convergence Energy, Seoul 151742, South Korea
基金
新加坡国家研究基金会;
关键词
Bronsted acids; dehydration; heterogeneous catalysis; mesoporous materials; renewable resources; GAS-PHASE DEHYDRATION; LONG-LIFE CATALYST; NIOBIUM PHOSPHATE; SUSTAINABLE PRODUCTION; FRUCTOSE DEHYDRATION; SILICA; OXIDE; SURFACE; SITES; CONVERSION;
D O I
10.1002/cssc.201200587
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of solid acid catalysts that contain a high density of Bronsted acid sites with suitable acidity, as well as a long lifetime, is one of great challenges for the efficient dehydration of glycerol to acrolein. Herein, we report on a mesoporous siliconiobium phosphate (NbPSi-0.5) composite, which is a promising solid Bronsted acid that is a potential candidate for such a high-performance catalyst. A variety of characterization results confirm that NbPSi-0.5 contains nearly pure Bronsted acid sites and has well-defined large mesopores. In addition, NbPSi-0.5 contains a similar amount of acid sites and exhibits weaker acidity than that of the highly acidic niobium phosphate and HZSM-5 zeolite. NbPSi-0.5 is quite stable and has a high activity for the dehydration of glycerol. The stability of NbPSi-0.5 is about three times higher than that of the reported catalyst. The significantly enhanced catalytic performance of NbPSi-0.5 can be attributed to 1) nearly pure Bronsted acidity, which suppresses side reactions that lead to coke formation; 2) a significant reduction of pore blocking due to the mesopores; and 3) a decrease in the amount and oxidation temperature of coke.
引用
收藏
页码:2460 / 2468
页数:9
相关论文
共 53 条
[1]   Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt [J].
Alhanash, Abdullah ;
Kozhevnikova, Elena F. ;
Kozhevnikov, Ivan V. .
APPLIED CATALYSIS A-GENERAL, 2010, 378 (01) :11-18
[2]   Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde [J].
Armaroli, T ;
Busca, G ;
Carlini, C ;
Giuttari, M ;
Galletti, AMR ;
Sbrana, G .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2000, 151 (1-2) :233-243
[3]   Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds [J].
Atia, Hanan ;
Armbruster, Udo ;
Martin, Andreas .
JOURNAL OF CATALYSIS, 2008, 258 (01) :71-82
[4]   CYCLOHEXANOL CONVERSION AS A TEST OF THE ACID-BASE PROPERTIES OF METAL-OXIDE CATALYSTS [J].
BEZOUHANOVA, CP ;
ALZIHARI, MA .
CATALYSIS LETTERS, 1991, 11 (02) :245-248
[5]   Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials [J].
Boettcher, Shannon W. ;
Fan, Jie ;
Tsung, Chia-Kuang ;
Shi, Qihui ;
Stucky, Galen D. .
ACCOUNTS OF CHEMICAL RESEARCH, 2007, 40 (09) :784-792
[6]   Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: Fructose dehydration reaction [J].
Carniti, Paolo ;
Gervasini, Antonella ;
Biella, Serena ;
Auroux, Aline .
CATALYSIS TODAY, 2006, 118 (3-4) :373-378
[7]   Sustainable production of acrolein:: gas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO2 and SiO2 [J].
Chai, Song-Hai ;
Wang, Hao-Peng ;
Liang, Yu ;
Xu, Bo-Qing .
GREEN CHEMISTRY, 2008, 10 (10) :1087-1093
[8]   Sustainable production of acrolein: investigation of solid acid-base catalysts for gas-phase dehydration of glycerol [J].
Chai, Song-Hai ;
Wang, Hao-Peng ;
Liang, Yu ;
Xu, Bo-Qing .
GREEN CHEMISTRY, 2007, 9 (10) :1130-1136
[9]  
Chheda J.N., 2007, Angew. Chem, V119, P7298
[10]   Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals [J].
Chheda, Juben N. ;
Huber, George W. ;
Dumesic, James A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (38) :7164-7183