Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites

被引:138
作者
Zeng, JJ
Saltysiak, B
Johnson, WS
Schiraldi, DA
Kumar, S
机构
[1] Georgia Inst Technol, Sch Text & Fiber Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
carbon nano fiber; poly(methyl methacrylate); nanocomposite;
D O I
10.1016/S1359-8368(03)00051-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Single wall carbon nanotubes, multi-wall carbon nanotubes, as well as carbon nano fibers (CNF) are being used for reinforcing polymer matrices. In this study, poly(methyl methacrylate) (PMMA) nanocomposites have been processed by melt blending, containing two different grades (PR-21-PS and PR-24-PS) of CNF manufactured by Applied Sciences Inc. The amount of nano fibers used was 5 and 10 wt%, respectively. The PMMA/CNF composites were processed into 4 mm diameter rods and 60 mum diameter fibers using small-scale melt spinning equipment. At 5 wt% CNF, composite rods as well as fibers show over 50% improvement in axial tensile modulus as compared to the control PMMA rod and fibers, respectively. The reinforcement efficiency decreased at 10 wt% CNF. The PMMA/CNF nanocomposite fibers also show enhanced thermal stability, significantly reduced shrinkage and enhanced modulus retention with temperature, as well as improved compressive strength. The CNF reinforcement efficiency has been analyzed using the modified Cox model. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:173 / 178
页数:6
相关论文
共 35 条
[1]  
BARRETT CS, 1943, STRUCTURE METALS, P455
[2]   Production and assessment of polycarbonate composites reinforced with vapour-grown carbon fibres [J].
Carneiro, OS ;
Covas, JA ;
Bernardo, CA ;
Caldeira, G ;
Van Hattum, FWJ ;
Ting, JM ;
Alig, RL ;
Lake, ML .
COMPOSITES SCIENCE AND TECHNOLOGY, 1998, 58 (3-4) :401-407
[3]   Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes [J].
Cumings, J ;
Zettl, A .
SCIENCE, 2000, 289 (5479) :602-604
[4]  
DASCH CJ, 1993, 21 BIENN C CARB BUFF, P82
[5]  
DUPIRE, 2000, Patent No. 1054036
[6]   Flammability properties of polymer - Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites [J].
Gilman, JW ;
Jackson, CL ;
Morgan, AB ;
Harris, R ;
Manias, E ;
Giannelis, EP ;
Wuthenow, M ;
Hilton, D ;
Phillips, SH .
CHEMISTRY OF MATERIALS, 2000, 12 (07) :1866-1873
[7]   Aligned single-wall carbon nanotubes in composites by melt processing methods [J].
Haggenmueller, R ;
Gommans, HH ;
Rinzler, AG ;
Fischer, JE ;
Winey, KI .
CHEMICAL PHYSICS LETTERS, 2000, 330 (3-4) :219-225
[8]   Study on poly(methyl methacrylate)/carbon nanotube composites [J].
Jia, ZJ ;
Wang, ZY ;
Xu, CL ;
Liang, J ;
Wei, BQ ;
Wu, DH ;
Zhu, SW .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 271 (1-2) :395-400
[9]   Alignment of carbon nanotubes in a polymer matrix by mechanical stretching [J].
Jin, L ;
Bower, C ;
Zhou, O .
APPLIED PHYSICS LETTERS, 1998, 73 (09) :1197-1199
[10]   Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites [J].
Jin, Z ;
Pramoda, KP ;
Xu, G ;
Goh, SH .
CHEMICAL PHYSICS LETTERS, 2001, 337 (1-3) :43-47