Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis

被引:283
作者
Kim, YongSig [1 ]
Park, Sunchung [1 ]
Gilmour, Sarah J. [1 ]
Thomashow, Michael F. [1 ,2 ]
机构
[1] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA
关键词
CAMTA proteins; salicylic acid; CBF proteins; gene regulation; low temperature; freezing tolerance; Arabidopsis thaliana; SYSTEMIC ACQUIRED-RESISTANCE; COLD RESPONSE PATHWAY; REGULATED GENE-EXPRESSION; PLANT IMMUNITY; SIGNAL-TRANSDUCTION; ACCLIMATION; THALIANA; DEFENSE; CALCIUM; ACTIVATORS;
D O I
10.1111/tpj.12205
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Previous studies in Arabidopsis thaliana established roles for CALMODULIN BINDING TRANSCRIPTION ACTIVATOR3 (CAMTA3) in the rapid cold induction of CRT/DRE BINDING FACTOR (CBF) genes CBF1 and CBF2, and the repression of salicylic acid (SA) biosynthesis at warm temperature. Here we show that CAMTA1 and CAMTA2 work in concert with CAMTA3 at low temperature (4 degrees C) to induce peak transcript levels of CBF1, CBF2 and CBF3 at 2h, contribute to up-regulation of approximately 15% of the genes induced at 24h, most of which fall outside the CBF pathway, and increase plant freezing tolerance. In addition, CAMTA1, CAMTA2 and CAMTA3 function together to inhibit SA biosynthesis at warm temperature (22 degrees C). However, SA levels increase in Arabidopsis plants that are exposed to low temperature for more than 1week. We show that this chilling-induced SA biosynthesis proceeds through the isochorismate synthase (ICS) pathway, with cold induction of ICS1 (which encodes ICS), and two genes encoding transcription factors that positively regulate ICS1 - CBP60g and SARD1 -, paralleling SA accumulation. The three CAMTA proteins effectively repress the accumulation of ICS1, CBP60g and SARD1 transcripts at warm temperature but not at low temperature. This impairment of CAMTA function may involve post-transcriptional regulation, as CAMTA transcript levels did not decrease at low temperature. Salicylic acid biosynthesis at low temperature did not contribute to freezing tolerance, but had a major role in configuring the transcriptome, including the induction of defense response' genes, suggesting the possible existence of a pre-emptive defense strategy programmed by prolonged chilling temperatures.
引用
收藏
页码:364 / 376
页数:13
相关论文
共 54 条
[1]   A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance [J].
Agarwal, Manu ;
Hao, Yujin ;
Kapoor, Avnish ;
Dong, Chun-Hai ;
Fujii, Hiroaki ;
Zheng, Xianwu ;
Zhu, Jian-Kang .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (49) :37636-37645
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   Salicylic Acid and its Function in Plant Immunity [J].
An, Chuanfu ;
Mou, Zhonglin .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2011, 53 (06) :412-428
[4]   Early genomic responses to salicylic acid in Arabidopsis [J].
Blanco, Francisca ;
Salinas, Paula ;
Cecchini, Nicolas M. ;
Jordana, Xavier ;
Van Hummelen, Paul ;
Alvarez, Maria Elena ;
Holuigue, Loreto .
PLANT MOLECULAR BIOLOGY, 2009, 70 (1-2) :79-102
[5]   Differential innate immune signalling via Ca2+ sensor protein kinases [J].
Boudsocq, Marie ;
Willmann, Matthew R. ;
McCormack, Matthew ;
Lee, Horim ;
Shan, Libo ;
He, Ping ;
Bush, Jenifer ;
Cheng, Shu-Hua ;
Sheen, Jen .
NATURE, 2010, 464 (7287) :418-U116
[6]   ICE1:: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J].
Chinnusamy, V ;
Ohta, M ;
Kanrar, S ;
Lee, BH ;
Hong, XH ;
Agarwal, M ;
Zhu, JK .
GENES & DEVELOPMENT, 2003, 17 (08) :1043-1054
[7]   A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis [J].
Cook, D ;
Fowler, S ;
Fiehn, O ;
Thomashow, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (42) :15243-15248
[8]  
Dempsey DA, 2011, ARABIDOPSIS BOOK, V9, pe0156
[9]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)
[10]   Roles for Arabidopsis CAMTA Transcription Factors in Cold-Regulated Gene Expression and Freezing Tolerance [J].
Doherty, Colleen J. ;
Van Buskirk, Heather A. ;
Myers, Susan J. ;
Thomashow, Michael F. .
PLANT CELL, 2009, 21 (03) :972-984