Mucopolysaccharidosis type VII (MPS VII) is an inherited disease caused by beta-glucuronidase (beta-glu) deficiency. This deficiency results in the lysosomal accumulation of glycosaminoglycans in all tissues and affects a wide range of organs, including the central nervous system, (CNS). Gene transfer is a promising approach to therapy for MPS VII because it allows extensive delivery of the enzyme to the affected tissues. We studied neurotransplantation of primary human cells to supply beta-glucuronidase to the CNS. Human neural progenitor cells (HNPC) were amplified and cotransduced with two lentiviral vectors, one encoding the green fluorescent protein and the other the human beta-glu. We show that these cells strongly expressed both transgenes in culture. When grafted into the mouse striatum, HNPC differentiated into neurons and astrocytes and expressed the two transgenes for at least 6 months. This study therefore paves the way for the treatment of MPS VII by long-term delivery of the appropriate enzyme.