Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles

被引:326
作者
Huang, XH
Jain, PK
El-Sayed, IH
El-Sayed, MA [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Laser Dynam Lab, Atlanta, GA 30332 USA
[2] Univ Calif San Francisco, Ctr Comprehens Canc, Dept Otolaryngol Head & Neck Surg, San Francisco, CA 94143 USA
关键词
D O I
10.1562/2005-12-14-RA-754
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Laser photothermal therapy of cancer with the use of gold nanoparticles immunotargeted to molecular markers on the cell surface has been shown to be an effective modality to selectively kill cancer cells at much lower laser powers than those needed for healthy cells. To elucidate the minimum light dosimetry required to induce cell death, photothermal destruction of two cancerous cell lines and a noncancerous cell line treated with antiepidermal growth factor receptor (anti-EGFR) anti body-conjugated gold nanoparticles is studied, and a numerical heat transport model is used to estimate the local temperature rise within the cells as a result of the laser heating of the gold nanoparticles. It is found that cell samples with higher nanoparticle loading require a lower incident laser power to achieve a certain temperature rise. Numerically estimated temperatures of 70-80 degrees C achieved by heating the gold particles agree well with the measured threshold temperature for destruction of the cell lines by oven heating and those measured in an earlier nanoshell method. Specific binding of anti-EGFR antibody to cancerous cells overexpressing EGFR selectively increases the gold nanoparticle loading within cancerous cells, thus allowing the cancerous cells to be destroyed at lower laser power thresholds than needed for the noncancerous cells. In addition, photothermal therapy using gold nanoparticles requires lower laser power thresholds than therapies using conventional dyes due to the much higher absorption coefficient of the gold nanoparticles.
引用
收藏
页码:412 / 417
页数:6
相关论文
共 38 条
[1]  
AHMEDIN J, 2004, CA-CANCER J CLIN, V54, P8
[2]   HEPATIC METASTASES - INTERSTITIAL LASER PHOTOCOAGULATION WITH REAL-TIME US MONITORING AND DYNAMIC CT EVALUATION OF TREATMENT [J].
AMIN, Z ;
DONALD, JJ ;
MASTERS, A ;
KANT, R ;
STEGER, AC ;
BOWN, SG ;
LEES, WR .
RADIOLOGY, 1993, 187 (02) :339-347
[3]  
Chen WR, 1996, CANCER LETT, V98, P169
[4]   Laser-photosensitizer assisted immunotherapy: A novel modality for cancer treatment [J].
Chen, WR ;
Adams, RL ;
Carubelli, R ;
Nordquist, RE .
CANCER LETTERS, 1997, 115 (01) :25-30
[5]   Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J].
Connor, EE ;
Mwamuka, J ;
Gole, A ;
Murphy, CJ ;
Wyatt, MD .
SMALL, 2005, 1 (03) :325-327
[6]  
DONALDSON SS, 1977, CANCER RES, V37, P2407
[7]   Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer [J].
El-Sayed, IH ;
Huang, XH ;
El-Sayed, MA .
NANO LETTERS, 2005, 5 (05) :829-834
[8]   Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles [J].
El-Sayed, Ivan H. ;
Huang, Xiaohua ;
El-Sayed, Mostafa A. .
CANCER LETTERS, 2006, 239 (01) :129-135
[9]   Tumor ablation with radio-frequency energy [J].
Gazelle, GS ;
Goldberg, SN ;
Solbiati, L ;
Livraghi, T .
RADIOLOGY, 2000, 217 (03) :633-646
[10]   Chemotherapy: What progress in the last 5 years? [J].
Hamilton, A ;
Hortobagyi, G .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (08) :1760-1775