The function of peroxiredoxins in plant organelle redox metabolism

被引:318
作者
Dietz, Karl-Josef [1 ]
Jacob, Simone [1 ]
Oelze, Marie-Luise [1 ]
Laxa, Miriam [1 ]
Tognetti, Vanesa [1 ]
Nunes de Miranda, Susana Marina [1 ]
Baier, Margarete [1 ]
Finkemeier, Iris [1 ]
机构
[1] Univ Bielefeld, D-33501 Bielefeld, Germany
关键词
antioxidant defence; chloroplast; mitochondrion; Oryza sativa (rice); peroxide; peroxiredoxin; redox signalling;
D O I
10.1093/jxb/erj160
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In 1996, cDNA sequences referred to as plant peroxiredoxins (Prx), i.e. a 1-Cys Prx and a 2-Cys Prx, were reported from barley. Ten years of research have advanced our understanding of plant Prx as thiol-based peroxide reductases with a broad substrate specificity, ranging from hydrogen peroxide to alkyl hydroperoxides and peroxinitrite. Prx have several features in common. (i) They are abundant proteins that are routinely detected in proteomics approaches. (ii) They interact with proteins such as glutaredoxins, thioredoxins, and cyclophilins as reductants, but also non-dithioldisulphide exchange proteins. By work with transgenic plants, their activity was shown to (iii) affect metabolic integrity, (iv) protect DNA from damage in vitro and as shown here in vivo, and (v) modulate intracellular signalling related to reactive oxygen species and reactive nitrogen species. (vi) In all organisms Prx are encoded by small gene families that are of particular complexity in higher plants. A comparison of the Prx gene families in rice and Arabidopsis thaliana supports previous suggestions on Prx function in specific subcellular and metabolic context. (vii) Prx gene expression and activity are subjected to complex regulation realized by an integration of various signalling pathways. 2-Cys Prx expression depends on redox signals, abscisic acid, and protein kinase cascades. Besides these general properties, the chloroplast Prx have acquired specific roles in the context of photosynthesis. The thioredoxin-dependent peroxidase activity can be measured in crude plant extracts and contributes significantly to the overall H2O2 detoxification capacity. Thus organellar Prx proteins enable an alternative water-water cycle for detoxification of photochemically produced H2O2, which acts independently from the ascorbate-dependent Asada-Halliwell-Foyer cycle. 2-Cys Prx and Prx Q associate with thylakoid membrane components. The mitochondrial PrAII F is essential for root growth under stress. Following a more general introduction, the paper summarizes present knowledge on plant organellar Prx, addressing Prx in signalling, and also suggests some lines for future research.
引用
收藏
页码:1697 / 1709
页数:13
相关论文
共 76 条
[1]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[2]   The water-water cycle as alternative photon and electron sinks [J].
Asada, K .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 2000, 355 (1402) :1419-1430
[3]   Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism [J].
Baier, M ;
Noctor, G ;
Foyer, CH ;
Dietz, KJ .
PLANT PHYSIOLOGY, 2000, 124 (02) :823-832
[4]   Alkyl hydroperoxide reductases: the way out of the oxidative breakdown of lipids in chloroplasts [J].
Baier, M ;
Dietz, KJ .
TRENDS IN PLANT SCIENCE, 1999, 4 (05) :166-168
[5]   Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases [J].
Baier, M ;
Dietz, KJ .
PLANT MOLECULAR BIOLOGY, 1996, 31 (03) :553-564
[6]   The acceptor availability at photosystem I and ABA control nuclear expression of 2-cys peroxiredoxin-α in Arabidopsis thaliana [J].
Baier, M ;
Ströher, E ;
Dietz, KJ .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (08) :997-1006
[7]   The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants [J].
Baier, M ;
Dietz, KJ .
PLANT JOURNAL, 1997, 12 (01) :179-190
[8]   Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology [J].
Baier, M ;
Dietz, KJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (416) :1449-1462
[9]   Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide [J].
Banmeyer, I ;
Marchand, C ;
Clippe, A ;
Knoops, B .
FEBS LETTERS, 2005, 579 (11) :2327-2333
[10]   Cloning and characterization of a 2-Cys peroxiredoxin from Pisum sativum [J].
Bernier-Villamor, L ;
Navarro, E ;
Sevilla, F ;
Lázaro, JJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (406) :2191-2199