Graphene Network Organisation in Conductive Polymer Composites

被引:46
作者
Syurik, Yuliya V. [3 ]
Ghislandi, Marcos G. [4 ]
Tkalya, Evgeniy E. [5 ]
Paterson, Garry
McGrouther, Damian [1 ,2 ]
Ageev, Oleg A. [3 ]
Loos, Joachim [1 ,2 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, Kelvin Nanocharacterisat Ctr, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Glasgow, Scottish Univ Phys Alliance, Glasgow G12 8QQ, Lanark, Scotland
[3] Taganrog Inst Technol, Taganrog 347928, Russia
[4] Eindhoven Univ Technol, Lab Mat & Interface Chem, NL-5600 MB Eindhoven, Netherlands
[5] Eindhoven Univ Technol, Dept Polymer Chem, NL-5600 MB Eindhoven, Netherlands
关键词
charge contrast SEM; conductive network organization; DC conductivity; graphene composites; morphology; DISPERSING CARBON NANOTUBES; LATEX TECHNOLOGY; PERCOLATION; OXIDE; NANOCOMPOSITES;
D O I
10.1002/macp.201200116
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A latex technique is used to prepare graphene/polystyrene and graphene/poly(propylene) composites with varying GR loadings. Their electrical properties and the corresponding volume organisation of GR networks are studied. Percolation thresholds for conduction are found to be about 0.9 and 0.4 wt% for GR/PS and GR/PP with maximum obtained conductivities of 12 and 0.4 S m-1 for GR loadings of 2 wt%, respectively. Investigations using SEM and electrical conductivity measurements show that for the preparation conditions used GR forms an isotropic 3D network in the PS matrix, but GR forms a 2D network in the PP matrix. The different GR network organisations are possibly forced by the different melt flow behaviour of the matrix polymers during processing and the subsequent crystallisation of PP.
引用
收藏
页码:1251 / 1258
页数:8
相关论文
共 27 条
[1]   Three-dimensional Electrical Property Mapping with Nanometer Resolution [J].
Alekseev, Alexander ;
Efimov, Anton ;
Lu, Kangbo ;
Loos, Joachim .
ADVANCED MATERIALS, 2009, 21 (48) :4915-+
[2]   A physically based percolation model of the effective electrical conductivity of particle filled composites [J].
Cai, Wen-Zhong ;
Tu, Shan-Tung ;
Gong, Jian-Ming .
JOURNAL OF COMPOSITE MATERIALS, 2006, 40 (23) :2131-2142
[3]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[4]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[5]   Conductive coatings and composites from latex-based dispersions [J].
Francis, Lorraine F. ;
Grunlan, Jaime C. ;
Sun, Jiakuan ;
Gerberich, W. W. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2007, 311 (1-3) :48-54
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites [J].
Grossiord, N ;
Loos, J ;
Regev, O ;
Koning, CE .
CHEMISTRY OF MATERIALS, 2006, 18 (05) :1089-1099
[8]   Strategies for dispersing carbon nanotubes in highly viscous polymers [J].
Grossiord, N ;
Loos, J ;
Koning, CE .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (24) :2349-2352
[9]   Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt [J].
Handge, U. A. ;
Potschke, P. .
RHEOLOGICA ACTA, 2007, 46 (06) :889-898
[10]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339