An epigenetic hypothesis of aging-related cognitive dysfunction

被引:96
作者
Penner, Marsha R. [3 ,4 ]
Roth, Tania L. [1 ,2 ]
Barnes, Carol A. [3 ,4 ,5 ,6 ]
Sweatt, J. David [1 ,2 ]
机构
[1] Univ Alabama Birmingham, Dept Neurobiol, Birmingham, AL 35294 USA
[2] Univ Alabama Birmingham, Evelyn F McKnight Brain Inst, Birmingham, AL 35294 USA
[3] Univ Arizona, Evelyn F McKnight Brain Inst, Tucson, AZ USA
[4] Univ Arizona, Arizona Res Labs, Div Neural Syst Memory & Aging, Tucson, AZ USA
[5] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA
[6] Univ Arizona, Dept Neurol, Tucson, AZ USA
来源
FRONTIERS IN AGING NEUROSCIENCE | 2010年 / 2卷
基金
美国国家卫生研究院;
关键词
memory; hippocampus; histone; DNA methylation; epigenetics; gene transcription; aging; cognitive impairment;
D O I
10.3389/fnagi.2010.00009
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
This brief review will focus on a new hypothesis for the role of epigenetic mechanisms in aging-related disruptions of synaptic plasticity and memory. Epigenetics refers to a set of potentially self-perpetuating, covalent modifications of DNA and post-translational modifications of nuclear proteins that produce lasting alterations in chromatin structure. These mechanisms, in turn, result in alterations in specific patterns of gene expression. Aging-related memory decline is manifest prominently in declarative/episodic memory and working memory, memory modalities anatomically based largely in the hippocampus and prefrontal cortex, respectively. The neurobiological underpinnings of age-related memory deficits include aberrant changes in gene transcription that ultimately affect the ability of the aged brain to be "plastic". The molecular mechanisms underlying these changes in gene transcription are not currently known, but recent work points toward a potential novel mechanism, dysregulation of epigenetic mechanisms. This has led us to hypothesize that dysregulation of epigenetic control mechanisms and aberrant epigenetic "marks" drive aging-related cognitive dysfunction. Here we focus on this theme, reviewing current knowledge concerning epigenetic molecular mechanisms, as well as recent results suggesting disruption of plasticity and memory formation during aging. Finally, several open questions will be discussed that we believe will fuel experimental discovery.
引用
收藏
页数:11
相关论文
共 146 条
[1]   THE EFFECTS OF HIPPOCAMPAL-LESIONS UPON SPATIAL AND NONSPATIAL TESTS OF WORKING MEMORY [J].
AGGLETON, JP ;
HUNT, PR ;
RAWLINS, JNP .
BEHAVIOURAL BRAIN RESEARCH, 1986, 19 (02) :133-146
[2]   Mouse and rat BDNF gene structure and expression revisited [J].
Aid, Tamara ;
Kazantseva, Anna ;
Piirsoo, Marko ;
Palm, Kaia ;
Timmusk, Tonis .
JOURNAL OF NEUROSCIENCE RESEARCH, 2007, 85 (03) :525-535
[3]   Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice:: A model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration [J].
Alarcón, JM ;
Malleret, G ;
Touzani, K ;
Vronskaya, S ;
Ishii, S ;
Kandel, ER ;
Barco, A .
NEURON, 2004, 42 (06) :947-959
[4]   Transcription Factors in Long-Term Memory and Synaptic Plasticity [J].
Alberini, Cristina M. .
PHYSIOLOGICAL REVIEWS, 2009, 89 (01) :121-145
[5]   Aging and path integration skill: Kinesthetic and vestibular contributions to wayfinding [J].
Allen, GL ;
Kirasic, KC ;
Rashotte, MA ;
Haun, DBM .
PERCEPTION & PSYCHOPHYSICS, 2004, 66 (01) :170-179
[6]  
[Anonymous], 2014, The strategy of the genes
[7]   Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway [J].
Bach, ME ;
Barad, M ;
Son, H ;
Zhuo, M ;
Lu, YF ;
Shih, R ;
Mansuy, I ;
Hawkins, RD ;
Kandel, ER .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :5280-5285
[8]   The emerging role of epigenetics in cellular and organismal aging [J].
Bandyopadhyay, D ;
Medrano, EE .
EXPERIMENTAL GERONTOLOGY, 2003, 38 (11-12) :1299-1307
[9]   REGION-SPECIFIC AGE EFFECTS ON AMPA SENSITIVITY - ELECTROPHYSIOLOGICAL EVIDENCE FOR LOSS OF SYNAPTIC CONTACTS IN HIPPOCAMPAL FIELD CA1 [J].
BARNES, CA ;
RAO, G ;
FOSTER, TC ;
MCNAUGHTON, BL .
HIPPOCAMPUS, 1992, 2 (04) :457-468
[10]   PHYSIOLOGICAL COMPENSATION FOR LOSS OF AFFERENT SYNAPSES IN RAT HIPPOCAMPAL GRANULE CELLS DURING SENESCENCE [J].
BARNES, CA ;
MCNAUGHTON, BL .
JOURNAL OF PHYSIOLOGY-LONDON, 1980, 309 (DEC) :473-485