Variations in New York city's urban heat island strength over time and space

被引:172
作者
Gaffin, S. R. [1 ]
Rosenzweig, C. [1 ]
Khanbilvardi, R. [2 ]
Parshall, L. [1 ]
Mahani, S. [2 ]
Glickman, H. [2 ]
Goldberg, R. [1 ]
Blake, R. [3 ]
Slosberg, R. B. [4 ]
Hillel, D. [1 ]
机构
[1] Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA
[2] CUNY City Coll, Dept Civil Engn Earth & Environm Sci, New York, NY 10031 USA
[3] New York City Coll Technol, Dept Phys, New York, NY USA
[4] L&S Energy Serv, Clifton Pk, NY USA
关键词
Urban Heat Island; Case Study Area; Urban Heat Island Effect; Crown Height; Urban Boundary Layer;
D O I
10.1007/s00704-007-0368-3
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We analyse historical (1900 - present) and recent (year 2002) data on New York city's urban heat island (UHI) effect, to characterize changes over time and spatially within the city. The historical annual data show that UHI intensification is responsible for similar to 1/3 of the total warming the city has experienced since 1900. The intensification correlates with a significant drop in windspeed over the century, likely due to an increase in the urban boundary layer as Manhattan's extensive skyline development unfolded. For the current-day, using 2002 data, we calculate the hourly and seasonal strength of the city's UHI for five different case study areas, including sites in Manhattan, Bronx, Queens and Brooklyn. We find substantial intra-city variation (similar to 2 degrees C) in the strength of the hourly UHI, with some locations showing daytime cool islands - i.e., temperatures lower than the average of the distant non-urban stations, while others, at the same time, show daytime heat islands. The variations are not easily explained in terms of land surface characteristics such as building stock, population, vegetation fraction or radiometric surface temperatures from remote sensing. Although it has been suggested that stations within urban parks will underestimate UHI, the Central Park station does not show a significant underestimate, except marginally during summer nights. The intra-city heat island variations in the residential areas broadly correlate with summertime electricity demand and sensitivity to temperature increases. This relationship will have practical value for energy demand management policy, as it will help prioritize areas for UHI mitigation.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 14 条
  • [1] Black Mary., 1976, OLD NEW YORK EARLY P, V2nd
  • [2] Observations and numerical simulations of urban heat island and sea breeze circulations over New York City
    Childs, PP
    Raman, S
    [J]. PURE AND APPLIED GEOPHYSICS, 2005, 162 (10) : 1955 - 1980
  • [3] Mesoscale aspects of the Urban Heat Island around New York City
    Gedzelman, SD
    Austin, S
    Cermak, R
    Stefano, N
    Partridge, S
    Quesenberry, S
    Robinson, DA
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2003, 75 (1-2) : 29 - 42
  • [4] Karl TR, 1988, J CLIMATE, V1, P1099, DOI 10.1175/1520-0442(1988)001<1099:UIDAEI>2.0.CO
  • [5] 2
  • [6] KIRKPATRICK JS, 1987, NATL WEA DIG, V12, P12
  • [7] Oke T. R., 1987, BOUNDARY LAYER CLIMA, V2nd
  • [8] Peterson TC, 2003, J CLIMATE, V16, P2941, DOI 10.1175/1520-0442(2003)016<2941:AOUVRI>2.0.CO
  • [9] 2
  • [10] Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations
    Ren, G. Y.
    Chu, Z. Y.
    Chen, Z. H.
    Ren, Y. Y.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (05)