JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species

被引:527
作者
Shen, HM [1 ]
Liu, ZG
机构
[1] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Community Occupat & Family Med, Singapore 117597, Singapore
[2] NCI, Cell & Canc Biol Branch, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
JNK; oxidative stress; reactive oxygen species; nitrosative stress; reactive nitrogen species; apoptosis; necrosis; TNF-alpha; free radicals;
D O I
10.1016/j.freeradbiomed.2005.10.056
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
c-Jun N-terminal kinase(JNK), or stress-activated protein kinase, is an important member of the mitogen-activated protein kinase superfamily, the members of which are readily activated by many environmental stimuli. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important groups of free radicals that are capable of eliciting direct damaging effects or acting as critical intermediate signaling molecules, leading to oxidative and nitrosative stress and a series of biological consequences. Recently there has been an increasing amount of research interest focusing on the regulatory role of JNK activation in ROS-and RNS-induced cellular responses. In this review we will first summarize and discuss some recent findings regarding the signaling mechanisms of ROS-or RNS-mediated JNK activation. Second, we will talk about the role of JNK in ROS-or RNS-mediated cell death (both apoptosis and necrosis). Finally, we will analyze the emerging evidence for the involvement of ROS and RNS as mediators in tumor necrosis factor alpha-induced apoptosis. Taken together, the accumulating knowledge about the ROS/RNS-induced JNK signaling pathway has greatly advanced our understanding of the complex processes deciding the Cellular responses to environmental stress. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:928 / 939
页数:12
相关论文
共 131 条
[1]   Regulation of JNK signaling by GSTp [J].
Adler, V ;
Yin, ZM ;
Fuchs, SY ;
Benezra, M ;
Rosario, L ;
Tew, KD ;
Pincus, MR ;
Sardana, M ;
Henderson, CJ ;
Wolf, CR ;
Davis, RJ ;
Ronai, Z .
EMBO JOURNAL, 1999, 18 (05) :1321-1334
[2]   Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis [J].
Andreka, P ;
Zang, J ;
Dougherty, C ;
Slepak, TI ;
Webster, KA ;
Bishopric, NH .
CIRCULATION RESEARCH, 2001, 88 (03) :305-312
[3]   Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes [J].
Aoki, H ;
Kang, PM ;
Hampe, J ;
Yoshimura, K ;
Noma, T ;
Matsuzaki, M ;
Izumo, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (12) :10244-10250
[4]  
ARNES BN, 1993, P NATL ACAD SCI USA, V90, P7915
[5]   Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress [J].
Benhar, M ;
Dalyot, I ;
Engelberg, D ;
Levitzki, A .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (20) :6913-6926
[6]  
Binder C, 1999, LAB INVEST, V79, P1703
[7]   Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis [J].
Boyd, CS ;
Cadenas, E .
BIOLOGICAL CHEMISTRY, 2002, 383 (3-4) :411-423
[8]   JNK is associated with Bcl-2 and PP1 in mitochondria - Paclitaxel induces its activation and its association with the phosphorylated form of Bcl-2 [J].
Brichese, L ;
Cazettes, G ;
Valette, A .
CELL CYCLE, 2004, 3 (10) :1312-1319
[9]   Activation of the endothelial nitric-oxide synthase by tumor necrosis factor-α -: A novel feedback mechanism regulating cell death [J].
Bulotta, S ;
Barsacchi, R ;
Rotiroti, D ;
Borgese, N ;
Clementi, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (09) :6529-6536
[10]   Signalling apoptosis: a radical approach [J].
Carmody, RJ ;
Cotter, TG .
REDOX REPORT, 2001, 6 (02) :77-90