Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon

被引:89
作者
Astman, N [1 ]
Gutnick, MJ [1 ]
Fleidervish, IA [1 ]
机构
[1] Hebrew Univ Jerusalem, Koret Sch Vet Med, IL-76100 Rehovot, Israel
关键词
sodium channel; persistent sodium current; axon; excitability; layer 5 pyramidal neuron; neocortex;
D O I
10.1523/JNEUROSCI.4907-05.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In addition to the well described fast-inactivating component of the Na+ current [transient Na+ current (I-NaT)], neocortical neurons also exhibit a low-voltage-activated, slowly inactivating "persistent" Na+ current (INaP), which plays a role in determining neuronal excitability and synaptic integration. We investigated the Na+ channels responsible for I-NaP in layer 5 pyramidal cells using cell-attached and whole-cell recordings in neocortical slices. In simultaneous cell-attached and whole-cell somatic recordings, no persistent Na+ channel activity was detected at potentials at which whole-cell I-NaP operates. Detailed kinetic analysis of late Na+ channel activity in cell-attached patches at 36 C revealed that somatic Na+ channels do not demonstrate "modal gating" behavior and that the probability of single late openings is extremely low (< 1.4 X 10(-4) or < 0.02% of maximal open probability of I-NaT). Ensemble averages of these currents did not reveal a sustained component whose amplitude and voltage dependence could account for I-NaP as seen in whole-cell recordings. Local application of TTX to the axon blocked somatically recorded I-NaP, whereas somatic and dendritic application had little or no effect. Finally, simultaneous current-clamp recordings from soma and apical dendrite revealed that Na+ plateau potentials originate closer to the axon. Our data indicate that the primary source of I-NaP is in the spike initiation zone in the proximal axon. The focal axonal presence of regenerative subthreshold conductance with voltage and time dependence optimal to manipulate integration of synaptic input, spike threshold, and the pattern of repetitive firing provides the layer 5 pyramidal neuron with a mechanism for dynamic control of its gain.
引用
收藏
页码:3465 / 3473
页数:9
相关论文
共 59 条
[1]   A NOVEL VOLTAGE-DEPENDENT CATION CURRENT IN RAT NEOCORTICAL NEURONS [J].
ALZHEIMER, C .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 479 (02) :199-205
[2]  
ALZHEIMER C, 1993, J NEUROSCI, V13, P660
[3]   POSTNATAL-DEVELOPMENT OF A PERSISTENT NA+ CURRENT IN PYRAMIDAL NEURONS FROM RAT SENSORIMOTOR CORTEX [J].
ALZHEIMER, C ;
SCHWINDT, PC ;
CRILL, WE .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 69 (01) :290-292
[4]   Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurones [J].
Andreasen, M ;
Lambert, JDC .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 519 (01) :85-100
[5]   DISTRIBUTION AND LATERAL MOBILITY OF VOLTAGE-DEPENDENT SODIUM-CHANNELS IN NEURONS [J].
ANGELIDES, KJ ;
ELMER, LW ;
LOFTUS, D ;
ELSON, E .
JOURNAL OF CELL BIOLOGY, 1988, 106 (06) :1911-1925
[6]   WHOLE CELL RECORDING FROM NEURONS IN SLICES OF REPTILIAN AND MAMMALIAN CEREBRAL-CORTEX [J].
BLANTON, MG ;
LOTURCO, JJ ;
KRIEGSTEIN, AR .
JOURNAL OF NEUROSCIENCE METHODS, 1989, 30 (03) :203-210
[7]   DIFFERENT VOLTAGE-DEPENDENCE OF TRANSIENT AND PERSISTENT NA+ CURRENTS IS COMPATIBLE WITH MODAL-GATING HYPOTHESIS FOR SODIUM-CHANNELS [J].
BROWN, AM ;
SCHWINDT, PC ;
CRILL, WE .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (06) :2562-2565
[8]   Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses [J].
Caldwell, JH ;
Schaller, KL ;
Lasher, RS ;
Peles, E ;
Levinson, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5616-5620
[9]   Neuromodulation of Na+ channels:: An unexpected form of cellular plasticity [J].
Cantrell, AR ;
Catterall, WA .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (06) :397-407
[10]   Transmitter modulation of slow, activity-dependent alterations in sodium channel availability endows neurons with a novel form of cellular plasticity [J].
Carr, DB ;
Day, M ;
Cantrell, AR ;
Held, J ;
Scheuer, T ;
Catterall, WA ;
Surmeier, DJ .
NEURON, 2003, 39 (05) :793-806