Domains of macrophage NO synthase have divergent roles in forming and stabilizing the active dimeric enzyme

被引:64
作者
Ghosh, DK
AbuSoud, HM
Stuehr, DJ
机构
[1] CLEVELAND CLIN,RES INST,DEPT IMMUNOL,CLEVELAND,OH 44195
[2] CASE WESTERN RESERVE UNIV,SCH MED,DEPT PHYSIOL & BIOPHYS,CLEVELAND,OH 44106
关键词
D O I
10.1021/bi9521295
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cytokine-inducible NO synthase (iNOS) is a flavin-containing hemeprotein that must dimerize to generate NO. Trypsin cleaves the dimeric enzyme into an oxygenase domain fragment that remains dimeric, contains heme and H4biopterin, and binds L-arginine and a reductase domain fragment that is monomeric, binds NADPH, FAD, FMN, and catalyzes the reduction of cytochrome c [Ghosh, D. K. & Stuehr, D. J. (1995) Biochemistry 34, 801-807]. The current study investigates the isolated oxygenase and reductase domains of iNOS to understand how they form and stabilize the active dimeric enzyme. The dimeric oxygenase domain dissociated into folded, heme-containing monomers when incubated with 2-5 M urea, whereas the reductase domain unfolded under these conditions and lost its ability to catalyze NADPH-dependent cytochrome c reduction. Spectral analysis of the dissociation reaction showed that it caused structural changes within the oxygenase domain and exposed the distal side of the heme to solvent, enabling it to bind dithiothreitol as a sixth ligand. importantly, the oxygenase domain monomers could reassociate into a dimeric form even in the absence of the reductase domain. The reaction required L-arginine and H4biopterin and completely reversed the structural changes in heme pocket and protein structure that occurred upon dissociating the original dimer. Together, this confirms that the oxygenase domain contains all of the determinants needed for subunit dimerization and indicates that the dimeric structure greatly affects the heme and protein environment in the oxygenase domain.
引用
收藏
页码:1444 / 1449
页数:6
相关论文
共 28 条
[1]   SUBUNIT DISSOCIATION AND UNFOLDING OF MACROPHAGE NO SYNTHASE - RELATIONSHIP BETWEEN ENZYME STRUCTURE, PROSTHETIC GROUP BINDING, AND CATALYTIC FUNCTION [J].
ABUSOUD, HM ;
LOFTUS, M ;
STUEHR, DJ .
BIOCHEMISTRY, 1995, 34 (35) :11167-11175
[2]   NITRIC-OXIDE SYNTHASES REVEAL A ROLE FOR CALMODULIN IN CONTROLLING ELECTRON-TRANSFER [J].
ABUSOUD, HM ;
STUEHR, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (22) :10769-10772
[3]  
BAEK KJ, 1993, J BIOL CHEM, V268, P21120
[4]   INDUCTION OF NITRIC-OXIDE SYNTHASE IN DEMYELINATING REGIONS OF MULTIPLE-SCLEROSIS BRAINS [J].
BO, L ;
DAWSON, TM ;
WESSELINGH, S ;
MORK, S ;
CHOI, S ;
KONG, PA ;
HANLEY, D ;
TRAPP, BD .
ANNALS OF NEUROLOGY, 1994, 36 (05) :778-786
[5]   CALMODULIN IS A SUBUNIT OF NITRIC-OXIDE SYNTHASE FROM MACROPHAGES [J].
CHO, HJ ;
XIE, QW ;
CALAYCAY, J ;
MUMFORD, RA ;
SWIDEREK, KM ;
LEE, TD ;
NATHAN, C .
JOURNAL OF EXPERIMENTAL MEDICINE, 1992, 176 (02) :599-604
[6]   MOLECULAR-CLONING AND EXPRESSION OF INDUCIBLE NITRIC-OXIDE SYNTHASE FROM HUMAN HEPATOCYTES [J].
GELLER, DA ;
LOWENSTEIN, CJ ;
SHAPIRO, RA ;
NUSSLER, AK ;
DISILVIO, M ;
WANG, SC ;
NAKAYAMA, DK ;
SIMMONS, RL ;
SNYDER, SH ;
BILLIAR, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3491-3495
[7]   MACROPHAGE NO SYNTHASE - CHARACTERIZATION OF ISOLATED OXYGENASE AND REDUCTASE DOMAINS REVEALS A HEAD-TO-HEAD SUBUNIT INTERACTION [J].
GHOSH, DK ;
STUEHR, DJ .
BIOCHEMISTRY, 1995, 34 (03) :801-807
[8]   RECONSTITUTION OF THE 2ND STEP IN NO SYNTHESIS USING THE ISOLATED OXYGENASE AND REDUCTASE DOMAINS OF MACROPHAGE NO SYNTHASE [J].
GHOSH, DK ;
ABUSOUD, HM ;
STUEHR, DJ .
BIOCHEMISTRY, 1995, 34 (36) :11316-11320
[9]   NITRIC OXIDES SYNTHASES - PROPERTIES AND CATALYTIC MECHANISM [J].
GRIFFITH, OW ;
STUEHR, DJ .
ANNUAL REVIEW OF PHYSIOLOGY, 1995, 57 :707-736
[10]  
HOFFMAN RA, 1993, J IMMUNOL, V151, P1508