Selecting landmarks for localization in natural terrain

被引:14
作者
Olson, CF [1 ]
机构
[1] Univ Washington, Bothell, WA 98011 USA
基金
美国国家航空航天局;
关键词
mobile robot; localization; landmark selection; terrain map; maximum-likelihood estimation; sensor uncertainty field;
D O I
10.1023/A:1014053611681
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe techniques to optimally select landmarks for performing mobile robot localization by matching terrain maps. The method is based upon a maximum-likelihood robot localization algorithm that efficiently searches the space of possible robot positions. We use a sensor error model to estimate a probability distribution over the terrain expected to be seen from the current robot position. The estimated distribution is compared to a previously generated map of the terrain and the optimal landmark is selected by minimizing the predicted uncertainty in the localization. This approach has been applied to the generation of a sensor uncertainty field that can be used to plan a robot's movements. Experiments indicate that landmark selection improves not only the localization uncertainty, but also the likelihood of success. Examples of landmark selection are given using real and synthetic data.
引用
收藏
页码:201 / 210
页数:10
相关论文
共 28 条
[1]  
Cassandra AR, 1996, IROS 96 - PROCEEDINGS OF THE 1996 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS - ROBOTIC INTELLIGENCE INTERACTING WITH DYNAMIC WORLDS, VOLS 1-3, P963, DOI 10.1109/IROS.1996.571080
[2]   Landmark selection strategies for path execution [J].
Deng, XT ;
Milios, E ;
Mirzaian, A .
ROBOTICS AND AUTONOMOUS SYSTEMS, 1996, 17 (03) :171-185
[3]   Active Markov localization for mobile robots [J].
Fox, D ;
Burgard, W ;
Thrun, S .
ROBOTICS AND AUTONOMOUS SYSTEMS, 1998, 25 (3-4) :195-207
[4]   Learning to select useful landmarks [J].
Greiner, R ;
Isukapalli, R .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (03) :437-449
[5]  
Grudic GZ, 1998, 1998 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS - PROCEEDINGS, VOLS 1-3, P724, DOI 10.1109/IROS.1998.727278
[6]  
Huttenlocher D. P., 1993, Proceedings. 1993 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.93CH3309-2), P705, DOI 10.1109/CVPR.1993.341019
[7]  
Koenig S, 1996, IEEE INT CONF ROBOT, P2301, DOI 10.1109/ROBOT.1996.506507
[8]  
Little JJ, 1998, 1998 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS - PROCEEDINGS, VOLS 1-3, P1072, DOI 10.1109/IROS.1998.727441
[9]   ERROR MODELING IN STEREO NAVIGATION [J].
MATTHIES, L ;
SHAFER, SA .
IEEE JOURNAL OF ROBOTICS AND AUTOMATION, 1987, 3 (03) :239-248
[10]   Learning landmark triples by experimentation [J].
Murphy, RR ;
Hershberger, D ;
Blauvelt, GR .
ROBOTICS AND AUTONOMOUS SYSTEMS, 1997, 22 (3-4) :377-392