Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter

被引:176
作者
Hayashi, Keiko [1 ]
Yoshida, Hitoshi [1 ]
机构
[1] Natl Agr & Food Res Org NARO, Natl Agr Res Ctr, Niigata 9430193, Japan
关键词
R gene; LTR retrotransposon; evolution; transcription; rice; blast disease; GENOME-WIDE ANALYSIS; RNA-POLYMERASE-III; LRR-ENCODING GENES; TRANSPOSABLE ELEMENTS; LTR-RETROTRANSPOSONS; DNA METHYLATION; JAPONICA RICE; REPEAT DOMAIN; ARABIDOPSIS; SPECIFICITY;
D O I
10.1111/j.1365-313X.2008.03694.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The plant genome contains a large number of disease resistance (R) genes that have evolved through diverse mechanisms. Here, we report that a long terminal repeat (LTR) retrotransposon contributed to the evolution of the rice blast resistance gene Pit. Pit confers race-specific resistance against the fungal pathogen Magnaporthe grisea, and is a member of the nucleotide-binding site leucine-rich repeat (NBS-LRR) family of R genes. Compared with the non-functional allele Pit(Npb), the functional allele Pit(K59) contains four amino acid substitutions, and has the LTR retrotransposon Renovator inserted upstream. Pathogenesis assays using chimeric constructs carrying the various regions of Pit(K59) and Pit(Npb) suggest that amino acid substitutions might have a potential effect in Pit resistance; more importantly, the upregulated promoter activity conferred by the Renovator sequence is essential for Pit function. Our data suggest that transposon-mediated transcriptional activation may play an important role in the refunctionalization of additional 'sleeping'R genes in the plant genome.
引用
收藏
页码:413 / 425
页数:13
相关论文
共 64 条
[1]   Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease [J].
Ade, Jules ;
DeYoung, Brody J. ;
Golstein, Catherine ;
Innes, Roger W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2531-2536
[2]   Diversity in nucleotide binding site-leucine-rich repeat genes in cereals [J].
Bai, JF ;
Pennill, LA ;
Ning, JC ;
Lee, SW ;
Ramalingam, J ;
Webb, CA ;
Zhao, BY ;
Sun, Q ;
Nelson, JC ;
Leach, JE ;
Hulbert, SH .
GENOME RESEARCH, 2002, 12 (12) :1871-1884
[3]   PCR AMPLIFICATION OF UP TO 35-KB DNA WITH HIGH-FIDELITY AND HIGH-YIELD FROM LAMBDA-BACTERIOPHAGE TEMPLATES [J].
BARNES, WM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (06) :2216-2220
[4]   Transposable element contributions to plant gene and genome evolution [J].
Bennetzen, JL .
PLANT MOLECULAR BIOLOGY, 2000, 42 (01) :251-269
[5]   Genetics -: Junk DNA as an evolutionary force [J].
Biemont, Christian ;
Vieira, Cristina .
NATURE, 2006, 443 (7111) :521-524
[6]   Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling, and ethylene production in Arabidopsis [J].
Bostick, M ;
Lochhead, SR ;
Honda, A ;
Palmer, S ;
Callis, J .
PLANT CELL, 2004, 16 (09) :2418-2432
[7]   Retrotransposons and their recognition of pol II promoters:: A comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe [J].
Bowen, NJ ;
Jordan, IK ;
Epstein, JA ;
Wood, V ;
Levin, HL .
GENOME RESEARCH, 2003, 13 (09) :1984-1997
[8]   A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta [J].
Bryan, GT ;
Wu, KS ;
Farrall, L ;
Jia, YL ;
Hershey, HP ;
McAdams, SA ;
Faulk, KN ;
Donaldson, GK ;
Tarchini, R ;
Valent, B .
PLANT CELL, 2000, 12 (11) :2033-2045
[9]   CHARACTERIZATION OF LTR SEQUENCES INVOLVED IN THE PROTOPLAST SPECIFIC EXPRESSION OF THE TOBACCO TNT1 RETROTRANSPOSON [J].
CASACUBERTA, JM ;
GRANDBASTIEN, MA .
NUCLEIC ACIDS RESEARCH, 1993, 21 (09) :2087-2093
[10]   TY3 INTEGRATES WITHIN THE REGION OF RNA POLYMERASE-III TRANSCRIPTION INITIATION [J].
CHALKER, DL ;
SANDMEYER, SB .
GENES & DEVELOPMENT, 1992, 6 (01) :117-128