A phase transition for avoiding a giant component

被引:16
作者
Bohman, T [1 ]
Kim, JH
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Microsoft Corp, Redmond, WA 98052 USA
关键词
D O I
10.1002/rsa.20085
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let c be a constant and (e(1),f(1)), (e(2),f(2)),...,(e(cn), f(cn)) be a sequence of ordered pairs of edges from the complete graph K-n chosen uniformly and independently at random. We prove that there exists a constant c(2) such that if c > c(2) then whp every graph which contains at least one edge from each ordered pair (e(i),f(i)) has a component of size Omega(n), and, if c < c(2), then whp there is a graph containing at least one edge from each pair that has no component with more than O(n(1-epsilon)) vertices, where epsilon is a constant that depends on c(2) - c. The constant c(2) is roughly 0.97677. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:195 / 214
页数:20
相关论文
共 11 条
[1]  
Bekessy A., 1972, Studia Scientiarum Mathematicarum Hungarica, V7, P343
[2]   ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) :296-307
[3]   Avoidance of a giant component in half the edge set of a random graph [J].
Bohman, T ;
Frieze, A ;
Wormald, NC .
RANDOM STRUCTURES & ALGORITHMS, 2004, 25 (04) :432-449
[4]   Avoiding a giant component [J].
Bohman, T ;
Frieze, A .
RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (01) :75-85
[5]  
Bollobas B., 2001, Random Graphs, V21
[6]  
Bollobas B., 1980, Eur. J. Comb., V1, P311, DOI [DOI 10.1016/S0195-6698(80)80030-8, 10.1016/S0195-6698(80)80030-8]
[7]   The cores of random hypergraphs with a given degree sequence [J].
Cooper, C .
RANDOM STRUCTURES & ALGORITHMS, 2004, 25 (04) :353-375
[8]  
ERDOS P, 1960, B INT STATIST INST, V38, P343
[9]  
KIM JH, UNPUB POISSON CLONIN
[10]  
SPENCER J, UNPUB BIRTH CONTROL