Electrostatic contributions to the stability of hyperthermophilic proteins

被引:295
作者
Xiao, L [1 ]
Honig, B [1 ]
机构
[1] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
关键词
electrostatics; hyperthermophiles; thermostability; ion pairs; continuum electrostatics;
D O I
10.1006/jmbi.1999.2810
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electrostatic contributions to the folding free energy of several hyperthermophilic proteins and their mesophilic homologs are calculated. In all the cases studied, electrostatic interactions are more favorable in the hyperthermophilic proteins. The electrostatic free energy is found not to be correlated with the number of ionizable amino acid residues, ion pairs or ion pair networks in a protein, but rather depends on the location of these groups within the protein structure. Moreover, due to the large free energy cost associated with burying charged groups, buried ion pairs are found to be destabilizing unless they undergo favorable interactions with additional polar groups, including other ion pairs. The latter case involves the formation of stabilizing ion pair networks as is observed in a number of proteins. Ion pairs located on the protein surface also provide stabilizing interactions in a number of cases. Taken together, our results suggest that many hyperthermophilic proteins enhance electrostatic interactions through the optimum placement of charged amino acid residues within the protein structure, although different design strategies are used in different cases. Other physical mechanisms are also likely to contribute, however optimizing electrostatic interactions offers a simple means of enhancing stability without disrupting the core residues characteristic of different protein families. (C) 1999 Academic Press.
引用
收藏
页码:1435 / 1444
页数:10
相关论文
共 35 条
[1]  
Adams MWW, 1996, ADV PROTEIN CHEM, V48, P101
[2]   ION-PAIRS IN PROTEINS [J].
BARLOW, DJ ;
THORNTON, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 168 (04) :867-885
[3]   Kinetic role of electrostatic interactions in the unfolding of hyperthermophilic and mesophilic rubredoxins [J].
Cavagnero, S ;
Debe, DA ;
Zhou, ZH ;
Adams, MWW ;
Chan, SI .
BIOCHEMISTRY, 1998, 37 (10) :3369-3376
[4]   CONTRIBUTIONS OF ENGINEERED SURFACE SALT BRIDGES TO THE STABILITY OF T4 LYSOZYME DETERMINED BY DIRECTED MUTAGENESIS [J].
DAOPIN, S ;
SAUER, U ;
NICHOLSON, H ;
MATTHEWS, BW .
BIOCHEMISTRY, 1991, 30 (29) :7142-7153
[5]   The crystal structure of a hyperthermophilic archaeal TATA-box binding protein [J].
DeDecker, BS ;
OBrien, R ;
Fleming, PJ ;
Geiger, JH ;
Jackson, SP ;
Sigler, PB .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 264 (05) :1072-1084
[6]   The stability of salt bridges at high temperatures: Implications for hyperthermophilic proteins [J].
Elcock, AH .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 284 (02) :489-502
[7]  
Gilson M.K., 1987, J COMPUT CHEM, V9, P327
[8]   How to make my blood boil [J].
Goldman, A .
STRUCTURE, 1995, 3 (12) :1277-1279
[9]  
HENDSCH ZS, 1994, PROTEIN SCI, V3, P211
[10]   2.0 angstrom structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: Possible determinants of protein stability [J].
Hennig, M ;
Darimont, B ;
Sterner, R ;
Kirschner, K ;
Jansonius, JN .
STRUCTURE, 1995, 3 (12) :1295-1306