Presynaptic K+ channels:: electrifying regulators of synaptic terminal excitability

被引:144
作者
Dodson, PD [1 ]
Forsythe, ID [1 ]
机构
[1] Univ Leicester, Dept Cell Physiol & Pharmacol, Leicester LE1 9HN, Leics, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
D O I
10.1016/j.tins.2004.02.012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K+ channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K+ channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K+ channels at presynaptic terminals.
引用
收藏
页码:210 / 217
页数:8
相关论文
共 93 条
[1]  
ARNESDAVIES M, 2004, EUR J NEUROSCI, V19, P325
[2]   REGULATION OF TRANSMITTER RELEASE AT THE SQUID GIANT SYNAPSE BY PRESYNAPTIC DELAYED RECTIFIER POTASSIUM CURRENT [J].
AUGUSTINE, GJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1990, 431 :343-364
[3]   ROLE OF CALCIUM-ACTIVATED POTASSIUM CHANNELS IN TRANSMITTER RELEASE AT THE SQUID GIANT SYNAPSE [J].
AUGUSTINE, GJ ;
CHARLTON, MP ;
HORN, R .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 398 :149-164
[4]   The sigma receptor as a ligand-regulated auxiliary potassium channel subunit [J].
Aydar, E ;
Palmer, CP ;
Klyachko, VA ;
Jackson, MB .
NEURON, 2002, 34 (03) :399-410
[5]  
Baranauskas G, 1999, J NEUROSCI, V19, P6394
[6]   INTRACELLULAR-RECORDING FROM VERTEBRATE MYELINATED AXONS - MECHANISM OF THE DEPOLARIZING AFTERPOTENTIAL [J].
BARRETT, EF ;
BARRETT, JN .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 323 (FEB) :117-144
[7]   Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels [J].
Beaumont, V ;
Zucker, RS .
NATURE NEUROSCIENCE, 2000, 3 (02) :133-141
[8]   Modulation of excitability by α-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons [J].
Bekkers, JM ;
Delaney, AJ .
JOURNAL OF NEUROSCIENCE, 2001, 21 (17) :6553-6560
[9]   3 POTASSIUM CHANNELS IN RAT POSTERIOR PITUITARY NERVE-TERMINALS [J].
BIELEFELDT, K ;
ROTTER, JL ;
JACKSON, MB .
JOURNAL OF PHYSIOLOGY-LONDON, 1992, 458 :41-67
[10]   Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat [J].
Borst, JGG ;
Helmchen, F ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 489 (03) :825-840