Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition

被引:73
作者
Eom, JiYong [1 ]
Kim, DongYung [1 ]
Kwon, HyukSang [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
关键词
multi-walled carbon nanotubes; capacity; chemical vapour deposition; grinding; electrochemical properties; lithium-ion battery;
D O I
10.1016/j.jpowsour.2005.08.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effects of ball-milling on Li insertion into multi-walled carbon nanotubes (MWNTs) are presented. The MWNTs are synthesized on supported catalysts by thermal chemical vapour deposition, purified, and mechanically ball-milled by the high energy ball-milling. The purified MWNTs and the ball-milled MWNTs were electrochemically inserted with Li. Structural and chemical modifications in the ball-milled MWNTs change the insertion-extraction properties of Li ions into/from the ball-milled MWNTs. The reversible capacity (C-rev) increases with increasing ball-milling time, namely, from 351mAhg(-1) (Li0.9C6) for the purified MWNTs to 641mAhg(-1) (Li1.7C6) for the ball-milled MWNTs. The undesirable irreversible capacity (C-irr) decreases continuously with increase in the ball-milling time, namely, from 1012 mAh g(-1) (Li2.7C6) for the purified MWNTs to 518 mAh g(-1) (Li1.4C6) for the ball-milled MWNTs. The decrease in C-irr of the ball-milled samples results in an increase in the coulombic efficiency from 25% for the purified samples to 50% for the ball-milled samples. In addition, the ball-milled samples maintain a more stable capacity than the purified samples during charge-discharge cycling. (c) 2005 Elsevier B.V All rights reserved.
引用
收藏
页码:507 / 514
页数:8
相关论文
共 26 条
[1]  
Benjamin J. S., 1990, MET POWDER REP, V45, P122
[2]  
BESENHARD JO, 1999, HDB BATTERY MAT, P231
[3]   Solid-state electrochemistry of the Li single wall carbon nanotube system [J].
Claye, AS ;
Fischer, JE ;
Huffman, CB ;
Rinzler, AG ;
Smalley, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (08) :2845-2852
[4]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[5]  
ELI YE, 1997, J ELECTROCHEM SOC, V144, P2968
[6]   Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD [J].
Eom, JY ;
Kwon, HS ;
Liu, J ;
Zhou, O .
CARBON, 2004, 42 (12-13) :2589-2596
[7]   Electrochemical storage of lithium multiwalled carbon nanotubes [J].
Frackowiak, E ;
Gautier, S ;
Gaucher, H ;
Bonnamy, S ;
Beguin, F .
CARBON, 1999, 37 (01) :61-69
[8]   Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes [J].
Gao, B ;
Bower, C ;
Lorentzen, JD ;
Fleming, L ;
Kleinhammes, A ;
Tang, XP ;
McNeil, LE ;
Wu, Y ;
Zhou, O .
CHEMICAL PHYSICS LETTERS, 2000, 327 (1-2) :69-75
[9]   Electrochemical intercalation of single-walled carbon nanotubes with lithium [J].
Gao, B ;
Kleinhammes, A ;
Tang, XP ;
Bower, C ;
Fleming, L ;
Wu, Y ;
Zhou, O .
CHEMICAL PHYSICS LETTERS, 1999, 307 (3-4) :153-157
[10]   Effects of synthesis condition of graphitic nanocabon tube on anodic property of Li-ion rechargeable battery [J].
Ishihara, T ;
Kawahara, A ;
Nishiguchi, H ;
Yoshio, M ;
Takita, Y .
JOURNAL OF POWER SOURCES, 2001, 97-8 :129-132