Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways

被引:251
作者
La Camera, S [1 ]
Gouzerh, G [1 ]
Dhondt, S [1 ]
Hoffmann, L [1 ]
Fritig, B [1 ]
Legrand, M [1 ]
Heitz, T [1 ]
机构
[1] Univ Strasbourg, CNRS, Inst Biol Mol Plantes, F-67000 Strasbourg, France
关键词
D O I
10.1111/j.0105-2896.2004.0129.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
In their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. To survive, plants have acquired, during evolution, complex mechanisms to detect their aggressors and defend themselves. Receptors and signaling pathways that are involved in such interactions with the environment are just beginning to be uncovered. What has been known for several decades is the extraordinary variety of chemical compounds the plants are capable to synthesize, and many of these products are implicated in defense responses. The number of natural products occurring in plants may be estimated in the range of hundreds of thousands, but only a fraction have been fully characterized. Despite the great importance of these metabolites for plant and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for phenylpropanoid and oxylipin metabolism, which are emphasized in this review. Both pathways are involved in plant resistance at several levels: by providing building units of physical barriers against pathogen invasion, by synthesizing an array of antibiotic compounds, and by producing signals implicated in the mounting of plant resistance.
引用
收藏
页码:267 / 284
页数:18
相关论文
共 120 条
[1]   Simultaneous suppression of multiple genes by single transgenes.: Down-regulation of three unrelated lignin biosynthetic genes in tobacco [J].
Abbott, JC ;
Barakate, A ;
Pinçon, G ;
Legrand, M ;
Lapierre, C ;
Mila, I ;
Schuch, W ;
Halpin, C .
PLANT PHYSIOLOGY, 2002, 128 (03) :844-853
[2]   Reactive electrophile species activate defense gene expression in Arabidopsis [J].
Alméras, E ;
Stolz, S ;
Vollenweider, S ;
Reymond, P ;
Mène-Saffrané, L ;
Farmer, EE .
PLANT JOURNAL, 2003, 34 (02) :202-216
[3]   Anti-inflammatory effects of aspirin and sodium salicylate [J].
Amann, R ;
Peskar, BA .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2002, 447 (01) :1-9
[4]   ALTERED LIGNIN COMPOSITION IN TRANSGENIC TOBACCO EXPRESSING O-METHYLTRANSFERASE SEQUENCES IN SENSE AND ANTISENSE ORIENTATION [J].
ATANASSOVA, R ;
FAVET, N ;
MARTZ, F ;
CHABBERT, B ;
TOLLIER, MT ;
MONTIES, B ;
FRITIG, B ;
LEGRAND, M .
PLANT JOURNAL, 1995, 8 (04) :465-477
[5]   Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways [J].
Barber, MS ;
McConnell, VS ;
DeCaux, BS .
PHYTOCHEMISTRY, 2000, 54 (01) :53-56
[6]   Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a Web-based database [J].
Beisson, F ;
Koo, AJK ;
Ruuska, S ;
Schwender, J ;
Pollard, M ;
Thelen, JJ ;
Paddock, T ;
Salas, JJ ;
Savage, L ;
Milcamps, A ;
Mhaske, VB ;
Cho, YH ;
Ohlrogge, JB .
PLANT PHYSIOLOGY, 2003, 132 (02) :681-697
[7]   A CHLOROPLAST LIPOXYGENASE IS REQUIRED FOR WOUND-INDUCED JASMONIC ACID ACCUMULATION IN ARABIDOPSIS [J].
BELL, E ;
CREELMAN, RA ;
MULLET, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8675-8679
[8]   Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling [J].
Berger, S .
PLANTA, 2002, 214 (04) :497-504
[9]   Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides [J].
Blee, E ;
Joyard, J .
PLANT PHYSIOLOGY, 1996, 110 (02) :445-454
[10]   Phytooxylipins and plant defense reactions [J].
Blée, E .
PROGRESS IN LIPID RESEARCH, 1998, 37 (01) :33-72