Binary black hole detection rates in inspiral gravitational wave searches

被引:20
作者
Van den Broeck, Chris [1 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3YB, S Glam, Wales
关键词
D O I
10.1088/0264-9381/23/13/L01
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The signal-to-noise ratios (SNRs) for quasi-circular binary black hole inspirals computed from restricted post-Newtonian waveforms are compared with those attained by more complete post-Newtonian signals, which are superpositions of amplitude-corrected harmonics of the orbital phase. It is shown that if one were to use the best available amplitude-corrected waveforms for detection templates, one should expect SNRs in actual searches to be significantly lower than those suggested by simulations based purely on restricted waveforms.
引用
收藏
页码:L51 / L58
页数:8
相关论文
共 18 条
[1]   The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits [J].
Arun, KG ;
Blanchet, L ;
Iyer, BR ;
Qusailah, MSS .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :3771-3801
[2]   The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits (vol 21, pg 3771, 2005) [J].
Arun, KG ;
Blanchet, L ;
Iyer, BR ;
Qusailah, MSS .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (14) :3115-3117
[3]   Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order (vol 6506, pg Nil_0002, 2002) [J].
Blanchet, L ;
Faye, G ;
Iyer, BR ;
Joguet, B .
PHYSICAL REVIEW D, 2005, 71 (12)
[4]   Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order [J].
Blanchet, L ;
Iyer, BR ;
Will, CM ;
Wiseman, AG .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (04) :575-584
[5]   Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order -: art. no. 091101 [J].
Blanchet, L ;
Damour, T ;
Esposito-Farèse, G ;
Iyer, BR .
PHYSICAL REVIEW LETTERS, 2004, 93 (09) :091101-1
[6]   Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order [J].
Blanchet, L ;
Faye, G ;
Iyer, BR ;
Joguet, B .
PHYSICAL REVIEW D, 2002, 65 (06)
[7]  
BLANCHET L, 2002, LIVING REV RELATIV, V5, P3
[8]   Transition from inspiral to plunge in binary black hole coalescences [J].
Buonanno, A ;
Damour, T .
PHYSICAL REVIEW D, 2000, 62 (06)
[9]   Quasiphysical family of gravity-wave templates for precessing binaries of spinning compact objects: Application to double-spin precessing binaries [J].
Buonanno, A ;
Chen, YB ;
Pan, Y ;
Vallisneri, M .
PHYSICAL REVIEW D, 2004, 70 (10) :104003-1
[10]   Detection template families for gravitational waves from the final stages of binary-black-hole inspirals: Nonspinning case [J].
Buonanno, A ;
Chen, Y ;
Vallisneri, M .
PHYSICAL REVIEW D, 2003, 67 (02)