Dynamic integration of auxin transport and signalling

被引:234
作者
Leyser, Ottoline [1 ]
机构
[1] Univ York, Dept Biol, York YO10 5YW, N Yorkshire, England
关键词
D O I
10.1016/j.cub.2006.05.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent years have seen rapid progress in our understanding of the mechanism of action of the plant hormone auxin. A major emerging theme is the central importance of the interplay between auxin signalling and the active transport of auxin through the plant to create dynamic patterns of auxin accumulation. Even in tissues where auxin distribution patterns appear stable, they are the product of standing waves, with auxin flowing through the tissue, maintaining local pockets of high and low concentration. The auxin distribution patterns result in changes in gene expression to trigger diverse, context-dependent growth and differentiation responses. Multi-level feedback loops between the signal transduction network and the auxin transport network provide self-stabilising patterns that remain sensitive to the external environment and to the developmental progression of the plant. The full biological implications of the behaviour of this system are only just beginning to be understood through a combination of experimental manipulation and mathematical modelling. © 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:R424 / R433
页数:10
相关论文
共 85 条
[1]   Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism [J].
Abas, L ;
Benjamins, R ;
Malenica, N ;
Paciorek, T ;
Wirniewska, J ;
Moulinier-Anzola, JC ;
Sieberer, T ;
Friml, J ;
Luschnig, C .
NATURE CELL BIOLOGY, 2006, 8 (03) :249-256
[2]   The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche [J].
Aida, M ;
Beis, D ;
Heidstra, R ;
Willemsen, V ;
Blilou, I ;
Galinha, C ;
Nussaume, L ;
Noh, YS ;
Amasino, R ;
Scheres, B .
CELL, 2004, 119 (01) :109-+
[3]   Channelling auxin action: modulation of ion transport by indole-3-acetic acid [J].
Becker, D ;
Hedrich, R .
PLANT MOLECULAR BIOLOGY, 2002, 49 (3-4) :349-356
[4]   Regulating the regulator: the control of auxin transport [J].
Benjamins, R ;
Malenica, N ;
Luschnig, C .
BIOESSAYS, 2005, 27 (12) :1246-1255
[5]  
Benjamins R, 2001, DEVELOPMENT, V128, P4057
[6]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[7]   The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport [J].
Bennett, T ;
Sieberer, T ;
Willett, B ;
Booker, J ;
Luschnig, C ;
Leyser, O .
CURRENT BIOLOGY, 2006, 16 (06) :553-563
[8]  
BERLETH T, 1993, DEVELOPMENT, V118, P575
[9]   Plant morphogenesis: long-distance coordination and local patterning [J].
Berleth, T ;
Sachs, T .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (01) :57-62
[10]   Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings [J].
Bhalerao, RP ;
Eklöf, J ;
Ljung, K ;
Marchant, A ;
Bennett, M ;
Sandberg, G .
PLANT JOURNAL, 2002, 29 (03) :325-332