A novel method to improve the gas storage capacity of ZIF-8

被引:156
作者
Mu, Liang [1 ]
Liu, Bei [1 ]
Liu, Huang [1 ]
Yang, Yuntao [1 ]
Sun, Changyu [1 ]
Chen, Guangjin [1 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; WALLED CARBON NANOTUBE; METHANE STORAGE; HYDROGEN STORAGE; SURFACE-AREA; NATURAL-GAS; ADSORPTION; SEPARATION; STABILITY; WATER;
D O I
10.1039/c2jm31541f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work a novel method for enhancing the gas storage capacity of metal-organic frameworks (MOFs), i.e. saturating the MOF with a suitable quantity of water and forming hydrates in it, was proposed. Commercialized ZIF-8 was adopted as it is very stable under an atmosphere of water. The adsorption and hydrate formation behaviors of methane in wet ZIF-8 with five different water contents (0.0%, 16.3%, 27.7%, 30.6%, and 35.1%, mass percentages) were investigated under hydrate formation conditions and the storage capacities of both ZIF-8 frameworks and ZIF-8 particle beds were determined. Our results show that hydrates can form in wet ZIF-8 pores and thus increase the overall storage capacities of both ZIF-8 frameworks and ZIF-8 particle beds remarkably. The contribution of hydrates to the total gas uptake of a ZIF-8 framework can be as high as 45%. Compared with dry ZIF-8 frameworks, the net storage capacity of the wet analogue with a water content of 35.1% increases from 5.954 to 9.304 mmol g(-1) at 269.15 K and 2.85 MPa, in other words, raised by more than 56%. The ideal volume storage capacity of the wet ZIF-8 framework can achieve more than 190 V/V at 3.0 MPa or so, 7% higher than the DOE target (180 V/V) for methane storage. In addition, our SEM measurements and XRD analysis demonstrate that ZIF-8 is stable during the saturation and hydrate formation processes, illustrating that it can be used repeatedly.
引用
收藏
页码:12246 / 12252
页数:7
相关论文
共 35 条
[1]   Single-wall nanostructured carbon for methane storage [J].
Bekyarova, E ;
Murata, K ;
Yudasaka, M ;
Kasuya, D ;
Iijima, S ;
Tanaka, H ;
Kahoh, H ;
Kaneko, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (20) :4681-4684
[2]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[3]  
Burchell T., 2000, SAE TECH PAP SER, V1653
[4]   Determination of pore size distribution and adsorption of methane and CCl4 on activated carbon by molecular simulation [J].
Cao, DP ;
Wang, WC ;
Shen, ZG ;
Chen, JF .
CARBON, 2002, 40 (13) :2359-2365
[5]   Optimization of single-walled carbon nanotube arrays for methane storage at room temperature [J].
Cao, DP ;
Zhang, XR ;
Chen, JF ;
Wang, WC ;
Yun, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (48) :13286-13292
[6]   Preparing a suitable material designed for methane storage: A comprehensive report [J].
Celzard, A ;
Fierro, V .
ENERGY & FUELS, 2005, 19 (02) :573-583
[7]   Hydrogen storage in graphite nanofibers [J].
Chambers, A ;
Park, C ;
Baker, RTK ;
Rodriguez, NM .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (22) :4253-4256
[8]   Water Stability of Microporous Coordination Polymers and the Adsorption of Pharmaceuticals from Water [J].
Cychosz, Katie A. ;
Matzger, Adam J. .
LANGMUIR, 2010, 26 (22) :17198-17202
[9]   Calorimetric heats of adsorption and adsorption isotherms .2. O-2, N-2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites [J].
Dunne, JA ;
Rao, M ;
Sircar, S ;
Gorte, RJ ;
Myers, AL .
LANGMUIR, 1996, 12 (24) :5896-5904
[10]   NITROGEN BET SURFACE-AREA MEASUREMENT AS A FINGERPRINT METHOD FOR THE ESTIMATION OF PORE VOLUME IN ACTIVE CARBONS [J].
FREEMAN, JJ ;
MCLEOD, AI .
FUEL, 1983, 62 (09) :1090-1091